Universidad Nacional de San Martín
Facultad de Ciencias Agrarias

«EVALUACIÓN DEL MOMENTO OPTIMO DE COSECHA DE CUATRO VARIEDADES DE ARROZ (Oryza sativa) AL TRASPLANTE EN EL BAJO MAYO»

TESIS

PARA OPTAR EL TÍTULO PROFESIONAL DE:

INGENIERO AGRÓNOMO

PRESENTADO POR EL BACHILLER:

DEMÓSTENES PAREDES FLORES

Tarapoto – Perú
2 001
UNIVERSIDAD NACIONAL DE SAN MARTÍN
FACULTAD DE CIENCIAS AGRARIAS
DEPARTAMENTO ACADÉMICO AGROSILVOPASTORIL
ÁREA DE SUELOS Y CULTIVOS

“EVALUACIÓN DEL MOMENTO OPTIMO DE COSECHA DE CUATRO VARIEDADES DE ARROZ (Oryza sativa) AL TRASPLANTE EN EL BAJO MAYO”.

TESIS
PARA OPTAR EL TITULO PROFESIONAL DE:
INGENIERO AGRONOMO

PRESENTADO POR EL BACHILLER:
DEMÓSTENES PAREDES FLORES.

SUSTENTADO Y APROBADO ANTE EL SIGUIENTE JURADO

Ing. MANUEL ROMAS TASILLA
PRESENTE

Ing. OTHILIO CHROY TOYCO
MIEMBRO

Ing. EYBIS FLORES GARCÍA
MIEMBRO

Ing. ALFREDO SÓLORZANO HOFFMANN
ASESOR
DEDICATORIA

A MIS PADRES

Con gratitud eterna a Hilter y Adis

por el sacrificio económico y moral

en la culminación con éxito de mi

carrera profesional.

A MIS HERMANOS:

Ruth Elizabeth, Elvira e Hilter,

que me brindaron su apoyo y

comprensión.
AGRADECIMIENTO

- Al Ing. Alfredo Solorzano Hoffmann, Profesor Asociado de la Universidad Nacional de San Martín, Asesor del presente trabajo de investigación.

- A los trabajadores de la Estación Experimental "El Porvenir", en especial al Programa de Arroz.

- A todas las personas y amigos quienes en forma desinteresada me apoyaron en el presente trabajo de investigación.
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCCIÓN</td>
<td>1</td>
</tr>
<tr>
<td>II. OBJETIVOS</td>
<td>3</td>
</tr>
<tr>
<td>III. REVISIÓN BIBLIOGRÁFICA</td>
<td>4</td>
</tr>
<tr>
<td>IV. MATERIALES Y MÉTODOS</td>
<td>21</td>
</tr>
<tr>
<td>4.1. MATERIALES</td>
<td>21</td>
</tr>
<tr>
<td>4.2. MÉTODOS</td>
<td>24</td>
</tr>
<tr>
<td>V. RESULTADOS</td>
<td>40</td>
</tr>
<tr>
<td>5.1. DÍAS AL 50% DE FLORACIÓN</td>
<td>40</td>
</tr>
<tr>
<td>5.2. FERTILIDAD O ESTERILIDAD DE ESPIGUELAS</td>
<td>42</td>
</tr>
<tr>
<td>5.3. RENDIMIENTO DE ARROZ EN CÁSCARA</td>
<td>45</td>
</tr>
<tr>
<td>5.4. RENDIMIENTO MOLINERO (GRANO ENTERO)</td>
<td>48</td>
</tr>
<tr>
<td>5.5. RENDIMIENTO MOLINERO (PILA TOTAL)</td>
<td>50</td>
</tr>
<tr>
<td>5.6. GRADO DE OPACIDAD DEL ENDOSPERMA</td>
<td>53</td>
</tr>
<tr>
<td>5.7. DISPERSIÓN ALCALINA</td>
<td>56</td>
</tr>
<tr>
<td>5.7. ANALISIS ECONOMICO</td>
<td>57</td>
</tr>
<tr>
<td>VI. DISCUSIÓN</td>
<td>58</td>
</tr>
<tr>
<td>VII. CONCLUSIONES</td>
<td>66</td>
</tr>
<tr>
<td>VIII. RECOMENDACIONES</td>
<td>68</td>
</tr>
<tr>
<td>IX. RESUMEN</td>
<td>69</td>
</tr>
<tr>
<td>X. BIBLIOGRAFÍA</td>
<td>71</td>
</tr>
<tr>
<td>XI. ANEXOS</td>
<td>73</td>
</tr>
</tbody>
</table>
I. **INTRODUCCIÓN**

El cultivo de arroz es el cereal más importante en el Perú, donde se ha convertido en la principal fuente de proteínas y calorías de la población. (ALVA 2000).

La producción Nacional de arroz cásica fue de 1955,027 t, con una superficie cosechada de 311,689 ha y un rendimiento de 6,275 t/ha., mientras que la producción en la Región San Martín de arroz cásica fue de 218,288 t, con una superficie cosechada de 36,448 ha y un rendimiento de 5,96 t/ha. (MINAG-OIA, 1999).

Se debe priorizar los arroces de alta calidad de grano que sean competitivos en los mercados nacionales e internacionales para que no se vean afectados por las fluctuaciones de precio. La tendencia actual es hacia arroces largos, delgados, translúcidos, que queden sueltos al cocinar y blandos al enfriarse. Estas características están relacionadas con temperaturas de gelatinización intermedia y porcentaje medio de amilosa.

Muchos agricultores locales hacen un buen manejo agronómico pero no le dan la importancia debida al momento oportuno de cosecha que es esencial para tener alta calidad molinera que cuando se adelanta o se retrasa la cosecha repercute en los rendimientos y la calidad del grano de arroz.
Con el presente trabajo se buscó determinar el momento óptimo de cosecha (desde el 50% de floración) y el porcentaje de humedad del grano a la cosecha de cuatro variedades comerciales de arroz: Capirona, Selva Alta, INIA 501 (Bijao), Línea CT 10310) al trasplante en el Bajo Mayo buscando obtener mayores rendimientos, calidad molinera y culinaria; empleando épocas de cosecha, a los 30, 35, 40, 45 y 50 días después del 50% de floración.
OBJETIVOS.

2.1. Determinar el momento óptimo de cosecha de cuatro variedades de arroz en cinco épocas de cosecha y su efecto sobre la calidad molinera y comestible del grano.

2.2. Determinar la relación beneficio/costo de los tratamientos.
REVISIÓN DE LITERATURA

3.1 MADURACION Y SENSIBILIDAD FOTO PERIODICA:

KAUFFMAN y otros (1981), informan que las prácticas climáticas y agronómicas predominantes determinan el número ideal de días desde la siembra de arroz hasta la cosecha.

En los trópicos, el periodo de maduración de las variedades insensibles al fotoperíodo fluctúa de cerca de 90 a 160 días.

La maduración es fuertemente afectada por la temperatura del aire, y en menor grado, por la temperatura del agua. Otros factores menos drásticos pero comunes que influyen en el periodo de maduración, son los métodos de siembra y la fertilización nitrogenada. En general los cultivos sembrados directamente maduran unos cuantos días, antes que los trasplantados. La deficiencia de Nitrógeno acelera un poco la maduración y las aplicaciones elevadas la demoran ligeramente.

Las variedades que maduran en más o menos 110 a 135 días usualmente rinden más que aquellas que maduran más pronto, o más tarde bajo la mayoría de condiciones agronómicas favorables.

Las variedades sumamente sensibles no florecerán cuando los días son largos. Los arroces poco sensibles florecen independientemente de la duración del día, pero los días largos prolongan su período de maduración.
3.2 DURACIÓN DEL PERIODO DE LLENADO DEL GRANO

KAUFFMAN y Otros (1981), informan que ha observado repetidamente que el período prolongado de llenado del grano está asociado con un incremento del rendimiento, aunque no se ha probado que sea precisamente la duración la responsable de los rendimiento altos.

El período de la floración fluctúa de 45 a 60 días en áreas templadas donde los rendimientos son usualmente altos. Este largo período de llenado de grano es evidentemente un efecto de la temperatura, y no un carácter varietal. En los trópicos, el tiempo de la floración a la maduración promedio es de 30 días, pero fluctúa entre 25 y 35 días según la variedad.

3.3 DESARROLLO Y LLENADO DEL GRANO DEL ARROZ

EL CIAT (1989), informa que es preciso conocer este proceso para entender cómo ciertos factores ambientales afectan la presencia del centro blanco. Una cantidad considerable de carbohidratos y azúcares se acumula en los tallos y vainas de las hojas; después de la floración, estos carbohidratos se translocan a la panícula y de ahí a las espigüillas durante el proceso de llenado del grano.
El transporte se realiza de abajo hacia arriba a través del floema, el cual está conectado al pericarpio; de allí pasa al endospermo a través del nucelo y de la capa de aleurona. Este llenado se realiza de la parte dorsal del grano a la parte ventral, o sea de la periferia dorsal a la parte central y de arriba hacia abajo.

3.4 COSECHA, TRILLA Y SECADO

SOLORZANO (1993), menciona que constituyen las últimas labores de campo en el proceso de producción del cultivo e influyen en forma decisiva en la calidad del arroz pilado.

3.4.1 COSECHA.

SOLORZANO (1993), menciona que esta labor se inicia con el "agoste" o secado de las pozas, cuando el 80% de las panojas han alcanzado la coloración verde limón o maduración intermedia. Se debe realizar cuando el 85 - 90% de los granos de la panoja alcanzan la maduréz comercial. Por su parte TASCON y GARCIA (1985); mencinan que la cosecha se realiza cuando el 95% de los granos en las panojas tengan color paja y el resto estén amarillentas.
TOPOLANSKI (1975); indica que a fin de uniformizar la maduración y reducir el tiempo que demanda el secado artificial, es conveniente mantener el campo drenado durante varios días antes de la cosecha. Lo ideal sería desaguar, según el tipo de suelo, entre 10 y 20 días antes de proceder al corte, para ello es peligroso porque el arroz en ese estado, se puede volcar con más facilidad bajo la acción de los vientos. Al respecto ECASA (1 985); informa que una cosecha demasiado temprana o muy tardía conducen a que muchos granos resulten quebrados en el molino.

3.4.1.1.Determinación del momento de cosecha.

EN MANUALES PARA LA EDUCACIÓN AGROPECUARIA, (1 993); se reporta que los índices para determinar el momento de la cosecha son a simple vista y la determinación del porcentaje de humedad del grano. A simple vista, el arroz está listo para la cosecha cuando el campo toma un color dorado y las espigas cuelgan de la planta por el peso de los granos.

La determinación del porcentaje de humedad es un índice más confiable. Existen diferentes instrumentos como los granos de una misma panca diferren con edad, su humedad será distinta. Por ejemplo, los granos de la base de la panoja son más jóvenes y tendrán más humedad que los de la punta de la espiga, que son
más viejos. Por lo tanto el porcentaje será el promedio entre las dos humedades.

TASCON y GARCIA (1985), mencionan que el momento de madurez a partir del período de floración tarda en ocurrir en tiempos diferentes para cada variedad y en la misma variedad con diferentes ambientes, mientras que el período de floración a madurez en el trópico cálido ha demostrado ser bastante constante. Los mismos autores refieren que la relación de la humedad con la cosecha sería:

Mayor de 27% : Menor rendimiento y granos yesosos.
Entre 20 y 27%: Humedad óptima.
Menor de 18% : Pérdidas de granos de calidad y mayor riesgo.

TOPOLANSKI (1975); indica que el arroz cosechado antes de alcanzar el estado de maduración suele presentar muchos granos yesosos, con "panza blanca", además, los granos son más livianos, y en la molienda presentan un mayor porcentaje de rotura.

3.4.2. TRILLA.

SOLORZANO (1993); menciona que la trilla es la operación más importante de todo el proceso de cosecha y consiste en separar el grano de la paja luego separar la paja del grano.
La humedad del grano paddy para trilla, debe ser 20% como máximo. Dicha operación puede realizarse en forma manual, al azote sobre un tronco o piedra, con el uso de animales o con máquinas trilladoras estacionarias autoprocesadas.

GRIST (1982); indica que la trilla del arroz cáscara separa al grano, con sus glumas o cascarilla adheridas del rastrojo o raquis.

JENNINGS, COFFMAN y KAUFFMAN (1981); mencionan que los tipos con resistencia intermedia al desgrane pueden trillarse más completamente con menos pérdida de grano cuando se cosechan mecánicamente.

3.4.3. SECADO.

GRIST (1982); indica que en los trópicos, las condiciones del tiempo no favorecen el secado uniforme del grano en el campo; además agrega que con el secado lento se logra un mayor porcentaje de granos enteros y el contenido de humedad es menos crítico en el molino.

TOPOLANSKI (1975); menciona que la operación de secado del arroz es una de las más delicadas, porque tanto un secado excesivo como la retención de mucha humedad perjudican directamente el grano.
LA UNIVERSIDAD DE FILIPINAS (1979); informó que el grano cosechado por una máquina "combinada" siempre sale con un alto porcentaje de humedad de 25 a 30%; esto obliga hacer una desecación, que puede ser al sol o con secadores térmicos.

Cuando se seca al sol se hacen plataformas de cemento y se distribuye el grano en la superficie dándole una altura de 20 cm., el tiempo que se deja al sol es variable. El grano debe salir con una humedad de hasta 14% como máximo, los secadores térmicos son máquinas con hornos que tienen la particularidad de calentar el aire de 35 a 40°C. En la torre el arroz está circulando y entra en contacto con el aire caliente, lo cual lo va haciendo perder humedad poco a poco.

Los investigadores estiman una pérdida aproximada de 10% de los cultivos, cuando los granos se secan en el terreno, hasta alcanzar un contenido de humedad del 14 al 16% antes de cosecharlos.

SOLORZANO (1993); recomienda que el arroz integral (con cáscara) debe ser secado al aire y a la sombra antes de ir al molino, para evitar el agrietamiento de los granos y mejorar su calidad molienda, puede hacerse también en secadores artificiales, en aparatos de circulación de aire forzado a la temperatura del ambiente (en el campo o en molino) en hornos de aire caliente a 35°C durante 24 horas con dos o cuatro pasadas de 1/2 hora cada una. Usando aparatos de columna de aire de 43 a 45°C.
3.5. PROCESO DE MOLINERÍA DEL ARROZ

SOLORZANO (1993); indica que es la separación de las glumas y glumillas (cáscara) del grano, mediante métodos que pueden ser manuales o tradicionales, modernos o mecánicos con plantas de procesado llamados molinos.

LA UNIVERSIDAD DE FILIPINAS (1979); define como la molienda o eliminación de la cubierta exterior (cáscara) y de las cubiertas de las semillas (salvado) de los granos de arroz palay.

ECASA (1985); menciona que el pilado del arroz consiste en remover del grano la cáscara; el pericarpio, el tegumento y el embrión, con un mínimo de pulimento y ruptura del endospermo.

TASCON y GARCIA (1985); indican que el proceso de molinería propiamente dicho se ejecuta partiendo del arroz, cáscara (paddy seco 13% de humedad), el cual pasa por diferentes máquinas para dejarlo en condiciones aptas de consumo. Los mismos autores reportan que en un molino arrocero se ejecutan dos procesos bien definidos que son: secamiento y molinería. Para realizar el primer proceso, el arroz que llega del campo con contenidos de impurazas (4 a 10%) y humedad (18 a 24%) altos son facilitar las condiciones de aptitud que permitan que el grano pueda ser trabajado con los equipos de molinería sin interrupción del proceso que perjudique su rendimiento.
SOLORZANO (1993); indica que para obtener un grano de alta calidad, el arroz con cáscara debe pasar en el molino por las operaciones siguientes: Secado, limpieza, descascarado, pulido, clasificación y glaseado o liustrado.

ECASA (1985); informó que el proceso de molinera comprende cuatro operaciones fundamentales (según las condiciones de cosecha y humedad del grano deberá procederse a realizar la pre-limpieza y secado del grano), indicadas a continuación:

- Limpieza de arroz, esto es separado de terrones, pedazos de tallo, hojas, semillas de malezas y otras matérias extrañas.
- Descascarado, o sea la remoción de la cáscara del grano de arroz.
- Pulido del arroz, consiste en quitar los residuos de la cáscara, el pericarpio, el tegumento, la aleurona y el embrión.
- Clasificación de los granos esto es separar los enteros de los partidos

TASCON y GARCIA (1985); mencionan que en Colombia el arroz blanco entero puede venderse en tres categorías principales:

* Excelso, el cual es un arroz que teóricamente debe tener un máximo de partido inferior al 5% en peso respecto al entero.
* Corriente de primera, con un porcentaje de partido inferior al 15%.
Corriente de segunda, los precios de estos arroces varían de acuerdo con sus porcentajes de partido.

Estos mismos autores dicen que los rendimientos obtenidos en un molino arrocero de un 100% de arroz cáscara con 13% de humedad se pueden obtener los siguientes porcentajes aproximados:

- 58 a 60% de arroz entero (excelso o corriente)
- 20 a 23 % de cascarilla.
- 8 a 10% de arroz partido grande. Cristal (1/2 a 3/4 de tamaño)
- 2 a 4% de arroz partido o granza (menos de 1/4 de tamaño).
- 6 a 8% de harina de blanqueo o pulimento.
- 1% de impurezas, polvo y vanos.

SOLORZANO (1993), indica que el rendimiento del proceso de elaboración varía según el tipo de tratamiento variedades, humedad y grado de pureza de las variedades (homogeneidad).

3.6. CALIDAD MOLINERA

ECASA (1995); define como calidad molinera en arroz, la capacidad de una variedad de arroz para producir mayor porcentajes de granos enteros pulidos y tener alto rendimiento total de pila (grano entero más grano quebrado): cuando el arroz es sometido al proceso de descascarado y liñado en molinos experimentales o industriales.
TASCON y GARCIA (1985); mencionaron que el rendimiento es una función del aumento de materia seca en el grano y se incrementa hasta unos 30 días desde la floración.

Los autores mencionados indicaron que en el área cálida peruana y con tres variedades, encontraron rendimientos máximos a los 30 días del 50% de la floración para dos variedades y a los 40 para otra y una reducción a partir de los 40 días en las tres variedades; el rendimiento de arroz pilado también se afectó después de los 40 días en todas las variedades y el grano quebrado disminuyó hasta los 30 días y se aumentó después de esa fecha.

3.6.1. FACTORES QUE INFLUYEN EN LA CALIDAD MOLINERA.

SOLORZANO (1993); menciona que son múltiples los factores que modifican la apariencia y resistencia del grano de arroz al quebrado. Estos factores pueden resumirse en genético, ambientales y de manejo del cultivo.

A.- FACTORES GENETICOS:

* Formaciones Opacas:

 Tienen su origen en factores genéticos y pueden también influir condiciones del ambiente.
Las zonas opacas o "Tizosas" pueden ocurrir en diferentes partes del grano y se caracterizan por la falta de transparencia debido a microporos entre los gránulos de almidón.
Entre las principales formaciones opacas están la "panza blanca" situada en la parte ventral del grano debido a espacios de aire entre los gránulos de almidón, por lo cual el grano se quebrará fácilmente.
Los "granos periféricos" se caracterizan por ser completamente opacas y aunque puedan presentar buena resistencia al quebrado su apariencia es mala.

Dureza:
La proporción de diferentes tipos de almidón en la estructura química del grano determina una mayor o menor dureza.
El almidón del endospermo está compuesto por unidades de glucosa que aparecen como dos fracciones distintas: una ramificada denominada Amilpectina y una fracción lineal, la Amilosa.
La amilosa siendo de cadena polímera lineal hace la estructura del grano menos rígida.
Puede ser que las variedades de grano duro y transparente tenga un contenido más o menos alto de amilpectina, y los arroces tipo "ceroso" están constituidos totalmente de amilpectina y tienen una estructura muy dura.
* Tamaño y Forma del Grano.
Existe cierta tendencia a relacionar el largo del grano con una mayor transparencia; así también los granos más redondos tienen mayor porcentaje de grano entero, ya que cuando los granos son más, cortos hay más uniformidad en la disposición de los gránulos de amilóide y menor probabilidad de zonas tizosas.

* El Tipo de Planta
También influye en la presentación del grano; variedades susceptibles a pudrición del tallo y de la vaina o susceptible a "tumbada" proporción mala conformación del grano y se incrementan las zonas opacas.

B.- FACTORES DE MANEJO DEL CULTIVO.

* Epoca de Siembra.
Influye mejorando o bajando el porcentaje de grano entero en la medida en que las épocas de instalación del almácigo se atrasan (dentro del rango óptimo de siembra para cada zona).

* Fertilización con Nitrógeno.
Dosis altas de nitrógeno favorecen el aumento de la dureza y resistencia al quebrado debido probablemente a que la proteína desplaza los espacios de aire de las zonas opacas, dando mayor consistencia al grano.
* Epoca de Cosecha.

Cuando la cosecha es muy temprano, la falta de madurez y alta humedad del grano propician menor dureza y por consiguiente disminuyen el porcentaje de grano entero y baja el rendimiento total de pila.

Cuando se cosecha demasiado tarde la sobre maduración produce un secado excesivo y resquebrajamiento interno del grano, la cual produce alto porcentaje de grano quebrado.

* Manejo Deficiente del agua de riego.

Sobre todo al momento del llenado del grano y en toda la fase reproductiva pueden ocasionar acumulación deficiente de materiales de reserva y mala conformación del grano.

C.- FACTORES CLIMATICOS o AMBIENTALES:

* Temperatura.

JENNINGS, COFFMAN y KAUFFMAN. (1993); mencionaron que el principal factor ambiental que influye en la opacidad parece ser la temperatura inmediatamente después de la floración; la temperatura alta aumenta la panza blanca, en tanto que la baja la disminuye o elimina.
Temperaturas nocturnas 13°C reducen las zonas opacas del grano mientras aquellas de 30°C las incrementan.

La forma del grano en cuanto a su relación radio dorsal/radio ventral (DV/V) es influenciado por la Temperatura.

A temperaturas altas (30°C) se incrementa el crecimiento del vientre y el dorso descresce.

Bajas temperaturas (23°C) determinan menor crecimiento del vientre y mayor del dorso.

La temperatura también influyen en la dureza del grano; a temperaturas altas las partes periféricas son más blandas que los granos formados a bajas temperaturas.

Humedad Relativa.

Este factor en interacción con la temperatura puede llegar a producir ruptura interna del grano (anillamiento) cuando se alteran periodos de humedad y altas temperaturas en cortos periodos de tiempo.

Baja humedad relativa y alta temperatura determinan mayor secado del grano en la planta; bajas temperaturas y alta humedad disminuyen la pérdida de agua en los granos.
3.7. CARACTERÍSTICAS PRINCIPALES DE LOS CULTIVARES EN ESTUDIO.

CUADRO No. 01. CARACTERÍSTICAS PRINCIPALES DE LOS CULTIVARES EN ESTUDIO

<table>
<thead>
<tr>
<th>CARACTERÍSTICAS</th>
<th>CAPIRONA</th>
<th>SELVA ALTA</th>
<th>INIA 501 (BIJAO)</th>
<th>LÍNEA CT10510</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGEN:</td>
<td>PERÚ</td>
<td>PERÚ</td>
<td>PERÚ</td>
<td>PERÚ</td>
</tr>
<tr>
<td>DESIGNACIÓN ANTERIOR:</td>
<td>CT7748-AM-14-3-1</td>
<td>PNA 2002-HU4-2-EP1-1</td>
<td>CT10510-15-1M-YA1-EP1</td>
<td></td>
</tr>
<tr>
<td>ALTURA DE PLANTA:</td>
<td>110-115 cm</td>
<td>112-130 cm</td>
<td>115-130 cm</td>
<td>85-105 cm</td>
</tr>
<tr>
<td>PERÍODO VEGETATIVO:</td>
<td>130 días</td>
<td>135-145 días</td>
<td>135-140 días</td>
<td>135-145 días</td>
</tr>
<tr>
<td>GRANO CÁSCARA:</td>
<td>8.5 a 9.0 mm</td>
<td>8.5 a 9.5 mm</td>
<td>9.0 a 10 mm</td>
<td>7.5 a 10 mm</td>
</tr>
<tr>
<td>LARGO:</td>
<td>2 a 2.5 mm</td>
<td>2 a 2.5 mm</td>
<td>2 a 2.5 mm</td>
<td>2.0 a 2.5 mm</td>
</tr>
<tr>
<td>ANCHO:</td>
<td>6.5 a 9.0 mm</td>
<td>6.5 a 9.5 mm</td>
<td>9.0 a 10 mm</td>
<td>7.5 a 10 mm</td>
</tr>
<tr>
<td>DESGRANE:</td>
<td>INTERMEDIA</td>
<td>INTERMEDIA</td>
<td>INTERMEDIA</td>
<td>INTERMEDIA</td>
</tr>
<tr>
<td>PESO DE 1000 GRANOS:</td>
<td>28.6 g.</td>
<td>28-28 g</td>
<td>31 g</td>
<td>23 a 28 g</td>
</tr>
<tr>
<td>% GRANO ENTERO:</td>
<td>65.0</td>
<td>52.5</td>
<td>62.8</td>
<td>54.5</td>
</tr>
<tr>
<td>% GRANO QUEBRADO:</td>
<td>7.5</td>
<td>18.0</td>
<td>8.6</td>
<td>14.5</td>
</tr>
<tr>
<td>% PILA TOTAL:</td>
<td>72.6</td>
<td>70.5</td>
<td>71.4</td>
<td>69.0</td>
</tr>
<tr>
<td>% TRASLUCENCIA:</td>
<td>80-85</td>
<td>85-95</td>
<td>85 a 95</td>
<td>70 a 60</td>
</tr>
<tr>
<td>CENTRO BLANCO:</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>2.5</td>
</tr>
<tr>
<td>DISPERSIÓN:</td>
<td>4.5</td>
<td>4.5</td>
<td>5.5</td>
<td>4 a 3</td>
</tr>
<tr>
<td>° DE GELATINIZACIÓN:</td>
<td>INTERMEDIA</td>
<td>INTERMEDIA</td>
<td>INTERMEDIA/BAJA</td>
<td>INTERMEDIA/ALTA</td>
</tr>
<tr>
<td>RENDIMIENTO:</td>
<td>7.5 - 9.5</td>
<td>7.0-8.5</td>
<td>ALTO MAYO: 8.0</td>
<td>ALTO MAYO: 7.1</td>
</tr>
<tr>
<td>POTENCIAL thé:</td>
<td></td>
<td></td>
<td>BAJO MAYO: 7.5</td>
<td>BAJO MAYO: 7.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HUALLAGA: 8.0</td>
<td>HUALLAGA: 7.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BAGUA : 8.5</td>
<td>BAGUA : 7.5</td>
</tr>
</tbody>
</table>

3.8. PERIODOS FENOLÓGICOS DE LAS VARIEDADES CAPIRONA, SELVA ALTA, INIA 501 (BIJAO) Y LÍNEA CT10310 - FEBRERO - JULIO DEL 2000

<table>
<thead>
<tr>
<th>ETAPAS</th>
<th>CARACTERÍSTICAS</th>
<th>DURACION PROMEDIO EN DÍAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Capirona</td>
</tr>
<tr>
<td>Germinación</td>
<td>De la siembra a la aparición de la primera hoja a través del coleoptilo.</td>
<td>3</td>
</tr>
<tr>
<td>Plantula</td>
<td>De la emergencia hasta antes de aparecer la primera macolla.</td>
<td>18</td>
</tr>
<tr>
<td>Macollamiento</td>
<td>De la aparición del primer hijo hasta cuando la planta alcanza el máximo número de hijos.</td>
<td>53</td>
</tr>
<tr>
<td>Elongación del Tallo</td>
<td>Desde el momento que el cuarto entrenudo del tallo principal por debajo de la inflorescencia comienza a hacerse notable en longitud.</td>
<td>72</td>
</tr>
<tr>
<td>Iniciación de la Panícula</td>
<td>La diferenciación del meristema en el punto de crecimiento, inicia el primordio de la panícula y marca el final de la fase vegetativa y el comienzo de la fase reproductiva.</td>
<td>85</td>
</tr>
<tr>
<td>Desarrollo de la Panícula</td>
<td>Desde cuando la panícula diferenciada es visible hasta cuando la punta de ella juntos debajo del cuello de la hoja bandera.</td>
<td>102</td>
</tr>
<tr>
<td>Floración</td>
<td>La salida de la panícula de la vaina de la hoja bandera y es seguido por la antesis de las flores en el tercio superior de la panícula.</td>
<td>102</td>
</tr>
<tr>
<td>Etapa Lechososa</td>
<td>Después de la fertilización de las flores, los granos son llenados con un líquido lechoso.</td>
<td>110</td>
</tr>
<tr>
<td>Etapa Pastosa</td>
<td>La consistencia del grano cambia primero a pastosa y luego se endurece en cerca de quince días. El color cambia a verdoso amarillento. La panícula dobla su punta en un arco de 180°.</td>
<td>122</td>
</tr>
<tr>
<td>Etapa Maduración</td>
<td>La planta entera esta fisiológicamente madura cuando, el 90% de los granos han madurado y muestran un color amarillo pajizo.</td>
<td>130</td>
</tr>
</tbody>
</table>
IV. MATERIALES Y MÉTODOS.

4.1. MATERIALES

4.1.1. Ubicación del Campo Experimental.

El presente trabajo de investigación se realizó en los Campos de la Estación Experimental "El Porvenir", en el Programa Nacional de Investigación de Maíz y Arroz del Instituto Nacional de Investigación Agraria (INIA), ubicado en el Km 14.5 de la Carretera Marginal Sur Tarapoto - Juanjui.

Ubicación Geográfica:

Altitud : 232 m.s.n.m.
Latitud Sur : 06° 35'
Longitud Oeste : 75° 19'
FUENTE : SENAMHI-San Martín.

Ubicación Política:

Región : San Martín
Provincia : San Martín
Distrito : Juan Guerra.
4.1.2. Historia del Terreno.

El terreno donde se instaló el experimento fue cultivado con arroz durante los últimos 29 años aproximadamente. Actualmente el terreno está dedicado al cultivo de arroz bajo riego en forma permanente con dos campañas al año.

4.1.3. Características Edáficas del Terreno.

EL MINISTERIO DE AGRICULTURA, (1982); refirió que de acuerdo al estudio detallado de los suelos de la E.E. "EL PORVENIR", el área estudiada se encuentra ubicada en la formación fisiográfica de tierras medias y suelos residuales, desarrollándose sobre arenisca finos, líticos o limonitas calcáreas, pertenecen a la serie Moparó (Mo), al grupo de los chromusters. Los suelos son moderadamente profundos, de textura fina, según su capacidad de uso pertenece a la Clase IV (Cultivo en limpio).

4.1.4. Condiciones Meteorológicas.

Según HOLDRIDGE, (1979), ecológicamente el área de trabajo se encuentra en la zona de vida de bosque seco tropical (ba-T) en la Selva Alta del Perú.
El Registro de temperatura, precipitación y humedad relativa durante el experimento de campo se muestra en el Cuadro No. 03.

<table>
<thead>
<tr>
<th>MES</th>
<th>TEMPERATURA (°C)</th>
<th>PRECIPITACIÓN TOTAL (mm)</th>
<th>HUMEDAD RELATIVA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAXIMA</td>
<td>MEDIA</td>
<td>MÍNIMA</td>
</tr>
<tr>
<td>Febrero</td>
<td>31.5</td>
<td>26.7</td>
<td>21.4</td>
</tr>
<tr>
<td>Marzo</td>
<td>32.0</td>
<td>26.6</td>
<td>21.6</td>
</tr>
<tr>
<td>Abril</td>
<td>30.3</td>
<td>25.3</td>
<td>21.4</td>
</tr>
<tr>
<td>Mayo</td>
<td>31.9</td>
<td>26.0</td>
<td>21.2</td>
</tr>
<tr>
<td>Junio</td>
<td>32.3</td>
<td>26.2</td>
<td>20.7</td>
</tr>
<tr>
<td>Julio</td>
<td>31.5</td>
<td>24.8</td>
<td>18.9</td>
</tr>
<tr>
<td>TOTAL</td>
<td>189.5</td>
<td>155.6</td>
<td>125.2</td>
</tr>
<tr>
<td>PROMEDIO</td>
<td>31.6</td>
<td>25.6</td>
<td>20.9</td>
</tr>
</tbody>
</table>

4.2. MÉTODOS

4.2.1. Diseño y Características del Experimento.

4.2.1.1. Diseño Experimental.

Para el desarrollo del presente trabajo se empleó el diseño de parcelas divididas conducidas en bloques completamente randomizados, con tres repeticiones. Las variedades fueron considerados como las parcelas principales y las épocas de cosecha como subparcelas.

4.2.1.2. Factores Estudiados.

A). Variedades de Arroz (V)

<table>
<thead>
<tr>
<th>No</th>
<th>VARIEDADES DE ARROZ</th>
<th>SÍMBOLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Capirona (Testigo)</td>
<td>v1</td>
</tr>
<tr>
<td>02</td>
<td>Selva Alta (Testigo)</td>
<td>v2</td>
</tr>
<tr>
<td>03</td>
<td>INIA 501 (Bijan)</td>
<td>v3</td>
</tr>
<tr>
<td>04</td>
<td>Línea CT 10310</td>
<td>v4</td>
</tr>
</tbody>
</table>
B). Epocas de Cosecha (C)

<table>
<thead>
<tr>
<th>No.</th>
<th>EPOCAS DE COSECHA</th>
<th>SIMBOLOGIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>30 Días después del 50% de floración</td>
<td>C1</td>
</tr>
<tr>
<td>02</td>
<td>35 Días después del 50% de floración</td>
<td>C2</td>
</tr>
<tr>
<td>03</td>
<td>40 Días después del 50% de floración</td>
<td>C3</td>
</tr>
<tr>
<td>04</td>
<td>45 Días después del 50% de floración</td>
<td>C4</td>
</tr>
<tr>
<td>05</td>
<td>50 Días después del 50% de floración</td>
<td>C5</td>
</tr>
</tbody>
</table>

4.2.1.3. Tratamientos Estudiados.

Fueron estudiados 20 tratamientos, los cuales se combinan en forma aleatoria con tres repeticiones. Se consideró como Testigos Comparativos a las variedades Capirona y Selva Alta.

En el Cuadro No. 04, se muestra los Tratamientos estudiados.
CUADRO No. 04: TRATAMIENTO EN ESTUDIO Y RANDOMIZACIÓN.

<table>
<thead>
<tr>
<th>FACTOR A</th>
<th>FACTOR B</th>
<th>TRATAMIENTO</th>
<th>COMBINACIÓN</th>
<th>CLAVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>C1</td>
<td>V1 C1</td>
<td>T1</td>
<td></td>
</tr>
<tr>
<td>V1</td>
<td>C2</td>
<td>V1 C2</td>
<td>T2</td>
<td></td>
</tr>
<tr>
<td>V1</td>
<td>C3</td>
<td>V1 C3</td>
<td>T3</td>
<td></td>
</tr>
<tr>
<td>V1</td>
<td>C4</td>
<td>V1 C4</td>
<td>T4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C5</td>
<td>V1 C5</td>
<td>T5</td>
<td></td>
</tr>
<tr>
<td>V2</td>
<td>C1</td>
<td>V2 C1</td>
<td>T6</td>
<td></td>
</tr>
<tr>
<td>V2</td>
<td>C2</td>
<td>V2 C2</td>
<td>T7</td>
<td></td>
</tr>
<tr>
<td>V2</td>
<td>C3</td>
<td>V2 C3</td>
<td>T8</td>
<td></td>
</tr>
<tr>
<td>V2</td>
<td>C4</td>
<td>V2 C4</td>
<td>T9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C5</td>
<td>V2 C5</td>
<td>T10</td>
<td></td>
</tr>
<tr>
<td>V3</td>
<td>C1</td>
<td>V3 C1</td>
<td>T11</td>
<td></td>
</tr>
<tr>
<td>V3</td>
<td>C2</td>
<td>V3 C2</td>
<td>T12</td>
<td></td>
</tr>
<tr>
<td>V3</td>
<td>C3</td>
<td>V3 C3</td>
<td>T13</td>
<td></td>
</tr>
<tr>
<td>V3</td>
<td>C4</td>
<td>V3 C4</td>
<td>T14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C5</td>
<td>V3 C5</td>
<td>T15</td>
<td></td>
</tr>
<tr>
<td>V4</td>
<td>C1</td>
<td>V4 C1</td>
<td>T16</td>
<td></td>
</tr>
<tr>
<td>V4</td>
<td>C2</td>
<td>V4 C2</td>
<td>T17</td>
<td></td>
</tr>
<tr>
<td>V4</td>
<td>C3</td>
<td>V4 C3</td>
<td>T18</td>
<td></td>
</tr>
<tr>
<td>V4</td>
<td>C4</td>
<td>V4 C4</td>
<td>T19</td>
<td></td>
</tr>
<tr>
<td>V4</td>
<td>C5</td>
<td>V4 C5</td>
<td>T20</td>
<td></td>
</tr>
</tbody>
</table>
4.2.1.4. Características del Campo Experimental.

a). Campo Experimental.

<table>
<thead>
<tr>
<th>Medida</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Largo</td>
<td>60.5 m</td>
</tr>
<tr>
<td>Ancho</td>
<td>18.0 m</td>
</tr>
<tr>
<td>Área total</td>
<td>1 089.0 m²</td>
</tr>
</tbody>
</table>

b). Bloques o Repeticiones.

<table>
<thead>
<tr>
<th>Medida</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. de bloques</td>
<td>3.0</td>
</tr>
<tr>
<td>Largo</td>
<td>50.0 m</td>
</tr>
<tr>
<td>Ancho</td>
<td>15.0 m</td>
</tr>
<tr>
<td>Área Total</td>
<td>750.0 m²</td>
</tr>
</tbody>
</table>

c). Parcela.

<table>
<thead>
<tr>
<th>Medida</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. de parcela por bloque</td>
<td>4.0</td>
</tr>
<tr>
<td>No. Total de parcelas</td>
<td>12.0</td>
</tr>
<tr>
<td>Largo</td>
<td>12.5 m</td>
</tr>
<tr>
<td>Ancho</td>
<td>5.0 m</td>
</tr>
<tr>
<td>Área Total</td>
<td>62.5 m²</td>
</tr>
</tbody>
</table>

d). Sub Parcelas.

<table>
<thead>
<tr>
<th>Medida</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. de sub parcelas por parcelas</td>
<td>5.0</td>
</tr>
<tr>
<td>No. Total de sub parcelas</td>
<td>60.0</td>
</tr>
<tr>
<td>Largo</td>
<td>5.0 m</td>
</tr>
<tr>
<td>Ancho</td>
<td>2.5 m</td>
</tr>
<tr>
<td>Área Total</td>
<td>12.5 m²</td>
</tr>
</tbody>
</table>
Area Neta Experimental por subparcela:

Largo : 4.0m
Ancho : 1.5m
Area Total : 6.0 m²
No. de golpes por subparcela : 200.0
No. de golpes a evaluar por subparcela : 96.0
Distanciamiento entre hileras : 0.25m
Distanciamiento entre plantas : 0.25m
No. De plantas por golpe : 4 - 6
No. De golpes/m² : 16

4.2.2. CONDUCCIÓN DEL EXPERIMENTO.

4.2.2.1. Muestreo de Suelo.

Para el análisis físico-químico del suelo se tomaron muestras al azar con un tubo muestrador a una profundidad de 20 cm, se recogieron en un balde plástico se homogenizaron y una muestra representativa se envió al laboratorio de suelos de la Estación Experimental "El Porvenir" para su análisis respectivo. Los resultados obtenidos de este análisis se presenta en el Cuadro N° 05.
CUADRO No. 05: ANÁLISIS FÍSICO-QUÍMICO DEL SUELO DEL CAMPO EXPERIMENTAL REALIZADOS EN EL LABORATORIO DE SUELOS DE LA E.E. “EL PORVENIR”.

<table>
<thead>
<tr>
<th>PARAMETRO</th>
<th>CONTENIDO</th>
<th>MÉTODO EMPLEADO</th>
<th>SIGNIFICADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Análisis Físico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arena (%)</td>
<td>30.04</td>
<td>Boyoucos</td>
<td></td>
</tr>
<tr>
<td>Limo (%)</td>
<td>21.84</td>
<td>Boyoucos</td>
<td></td>
</tr>
<tr>
<td>Arcilla (%)</td>
<td>48.12</td>
<td>Boyoucos</td>
<td></td>
</tr>
<tr>
<td>Textura</td>
<td>Arcilloso</td>
<td>Hidrómetro</td>
<td>Moderadamente Fina</td>
</tr>
<tr>
<td>Análisis Químico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materia Orgánica (%)</td>
<td>1.76</td>
<td>Wsilkley y Black</td>
<td>Bajo</td>
</tr>
<tr>
<td>Nitrógeno (%)</td>
<td>0.079</td>
<td>Micro Kjeldahl</td>
<td>Bajo</td>
</tr>
<tr>
<td>Fósforo (ppm)</td>
<td>13.94</td>
<td>Olsen modificado</td>
<td>Medio</td>
</tr>
<tr>
<td>Potasio (meq/100 gr. suelo)</td>
<td>0.9</td>
<td>Fotometría de llama</td>
<td>Medio</td>
</tr>
<tr>
<td>Ca+Mg(meq/100gr. suelo)</td>
<td>24.9</td>
<td>Versenato</td>
<td>Alto</td>
</tr>
<tr>
<td>C.E. mmhos/cm</td>
<td>0.54</td>
<td>Colorímetro</td>
<td>Sin problema de sales</td>
</tr>
<tr>
<td>pH</td>
<td>7.4</td>
<td>Potenciometro</td>
<td>De reacción alcalina</td>
</tr>
</tbody>
</table>
4.2.2.2. Manejo del Cultivo.

4.2.2.2.1. Almácigo.

La preparación del terreno consistió en la limpieza de los rastros de la cosecha anterior, roturación del terreno mediante una rastra (Semipesada), inundación, batido del terreno en barro y nivelación mediante un pase de arado rotativo y por último un nivelado fino utilizando una paleta de madera.

B). Cantidad de Semilla.

Se utilizó 80 kg. de semilla para 400 m² de almácigo para una hectárea en campo definitivo para cada uno de las cuatro variedades.

C). Siembra y Manejo del agua

Se voleó la semilla pregerminada en una lámina de agua de 5 cm, aproximadamente por un período de 24 horas, luego se realizó las secas y repases por un período de 8 a 10 días. Después de los 10 días se mantuvo una lámina de agua dependiendo del tamaño de las plántulas.
D). **Fertilización.**

Se fertilizó empleando urea (45% N) a una dosis de 90 kg.N/ha, aplicado a los 15 días de edad para todas las variedades.

E). **Control Fitosanitario.**

No se aplicó ningún producto químico para el control de plagas y enfermedades por que no hubo problema en el presente estudio.

4.2.2.2. **Campo Definitivo.**

A). **Preparación del Terreno.**

Consistió en la mecanización del suelo mediante labores de aradura en seco, pasada de rastra para mullir bien el suelo, fangueo y nivelación.

B). **Trazo del Campo Experimental.**

Se demarcó el terreno permitiendo diseñar los bloques, parcela y subparcelas, quedando listo el terreno para el trasplante respectivo.

C). **Edad y Saca de Plántulas para el Trasplante.**

La edad de las plántulas para el trasplante fue de 28 días y la saca de plántulas consistió en extraer, evitando rotura y con una anterioridad de riego, teniendo en cuenta la cantidad de semilla para el trasplante por cada tratamiento.
D). Distanciamiento entre Plántulas.

El trasplante se realizó con un distanciamiento de 0.25cm entre hileras y 0.25m entre golpes, es decir 16 golpes/m².

E). Número de Plantas por Golpe.

Se utilizó de 4 a 6 plantas por golpe.

F). Manejo de Agua.

El trasplante se realizó sobre una lámina de agua, para facilitar la fijación de las plántulas en el terreno. Después de 3 días del trasplante se quitó el agua para facilitar el enraizamiento prendimiento. Después del prendimiento, se aplicó agua al campo de acuerdo a las necesidades del cultivo, tomando en cuenta las épocas críticas del máximo macollamiento y la floración para un buen llenado de los granos y se quitó el agua cercano a la madurez.

G). Fertilización.

Toda el área del experimento se fertilizó con urea (45%N) a la dosis de 150 kgN/ha Se aplicó en forma fraccionada en dos etapas, la primera dosis (60%) a los 20 días después del trasplante (macollamiento) y la segunda (40%) de la dosis total al encañado o punto de algodón (80 días)
H). Control de Malezas.

Se realizó un control químico de malezas a través de un herbicida pre emergente utilizando el producto bentiocarbarnato a razón de 3 l/ha, sobre una lámina de agua un día después del trasplante.

I. Control Fitosanitario.

No se aplicó ningún producto químico para el ataque de plagas y enfermedades.

J). Cosecha

La cosecha se realizó a los 30, 35, 40, 45 y 50 días después del 50% de floración del cultivo.

La cosecha se hizo en forma manual, con haces, en un área neta experimental de 6 m² de cada subparcela, descartando los contornos para evitar el efecto de borde.

K. Trilla.

La trilla se realizó en forma manual, al azote, ajustándose a la humedad de cosecha de 14%.

4.2.3. EVALUACIONES REGISTRADAS.

Las evaluaciones se realizaron en base a las recomendaciones del Programa Nacional de Investigación en Maíz y Arroz (PNIMA), bajo las normas técnicas establecidas por el Centro Internacional de Agricultura Tropical. (CIAT).
4.2.3.1. Fertilidad o Esterilidad de las Espiguillas.

Se evaluaron 8 pancones al azar dentro del área neta experimental de las subparcelas contando los granos totales (llenos y vanos), estimando la proporción de espiguillas fértiles y estériles. Rosero (1983).

Aplicación de la Escala:

Según porcentajes respectivos:
1 más de 90% altamente fértiles.
3 más de 75 - 89% fértiles
5 más 50 - 75% parcialmente fértiles.
7 más 51 - 90% estériles.
9 más 91 - 100% altamente estériles.

4.2.3.2. Floración.

Se registró el número de días transcurridos desde el remojo de la semilla hasta el 50% de floración, dentro del área neta experimental de cada tratamiento.

4.2.3.3. Rendimiento de Grano.

Se registró el rendimiento en Kg/ha de arroz en cáscara al momento de cada época de cosecha, ajustándose los datos al 14% de humedad comercial.
4.2.3.4. **Peso de 1 000 Granos.**

Se tomó tres muestras de 1 000 granos enteros de cada tratamiento, con un contenido de humedad del 14% y se registró el promedio de peso en gramos.

4.2.3.5. **Longitud del Grano Descascarado.**

Se realizó en el laboratorio de Molinería de la E.E. “El Porvenir” donde previamente se retiró manualmente la cáscara del grano y con la ayuda de un vernier o pie de rey se midió en mm el tamaño de los granos.

Las mediciones de la longitud de los granos enteros se clasificaron en base a la siguiente escala del CIAT. 1989:

<table>
<thead>
<tr>
<th>Denominación</th>
<th>Longitud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extralargo (EL)</td>
<td>7.5 mm ó más</td>
</tr>
<tr>
<td>Largo (L)</td>
<td>6.5 mm a 7.4 mm</td>
</tr>
<tr>
<td>Medio (M)</td>
<td>5.6 mm a 6.4 mm</td>
</tr>
<tr>
<td>Corto ©</td>
<td>5.5 mm ó menos</td>
</tr>
</tbody>
</table>

4.2.3.6. **Ancho del Grano Descascarado.**

Se realizó la medición con la ayuda del Vernier en mm, en la parte central del punto más ancho.
Clasificación en base a la siguiente escala del (CIAT.1989).

<table>
<thead>
<tr>
<th>Denominación</th>
<th>Longitud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Largo (L)</td>
<td>Mayor de 2.5 mm</td>
</tr>
<tr>
<td>Medio (M)</td>
<td>1.25 mm a 2.4 mm</td>
</tr>
<tr>
<td>Corto (C)</td>
<td>1.24 mm ó menos</td>
</tr>
</tbody>
</table>

4.2.3.7. **La Relación: Largo/Ancho del Grano Descascarado.**

La medición se realizó en base a la siguiente escala de clasificación (IRRI, 1996).

<table>
<thead>
<tr>
<th>Forma</th>
<th>Relación: L/A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delgado</td>
<td>más de 3.0 mm.</td>
</tr>
<tr>
<td>Medio</td>
<td>de 2.2 mm a 2.9 mm</td>
</tr>
<tr>
<td>Ancho</td>
<td>de 1.2 mm a 2.1 mm</td>
</tr>
<tr>
<td>Redondo</td>
<td>menos de 1.1 mm.</td>
</tr>
</tbody>
</table>

4.2.3.8. **Humedad de Cosecha.**

Se registró al momento de cada época de cosecha de las variedades en los diferentes tratamientos.

4.2.3.9. **Opacidad del Endospermo.**

Los granos translúcidos son los más deseados en la industria arrocera. La panza blanca o centro blanco es una opacidad que se presenta en los arroces glutinosos y en los
aromas no glutinosos se debe a la falta de compactación de las partículas de almidón y proteínas en las células.

Se tomaron 4 muestras de molinería por tratamiento de 5 granos enteros por cada muestra para determinar el grado de opacidad o presencia de panza blanca.

Se aplicó la escala internacional de clasificación del 0 al 5 (0=0% granos translúcidos; 5 = 100% granos opacos) (CIAT, 1989).

4.2.3.10. *Rendimiento Molinero.*

Para determinar el rendimiento de plía total (grano entero más grano quebrado) de cada tratamiento.

Se recogió una muestra representativa de arroz cáscara, libreada partículas extrañas, se pesó 100 gramos, se determinó la humedad, se piló, y se trasladó al separador de granos.

Se clasificó en base a los siguientes parámetros:

* Entero o excelsa (granos enteros y granos de 3/4 de su tamaño).

* Partido o quebrado (menos de 3/4, mitades y puntas de granos).

Y por último se pesó cada tratamiento (grano entero y grano quebrado por separado). El peso de arroz entero representa el "índice de pilada" (CIAT, 1979).
4.2.3.11. *Dispersion Alcalina.*

Esta medida que se hace después de molinar el grano, se usa como una indicación de la temperatura de gelatinización y cocimiento, y se determinó así: en una caja plástica que contenga una solución de KOH al 1.7% se colocaron 6 granos de arroz molinado, de tal manera que no se junten. Se dejaron en una estufa a 30°C, y a las 24 horas se registró el grado de desintegración. Para esta evaluación se utilizó la escala numérica de 7 grados de los estados de los granos que se presenta en el Cuadro No. 06 CIAT (1989).
CUADRO No. 06: ESTADO DE LOS GRANOS

<table>
<thead>
<tr>
<th>GRADO</th>
<th>DISPERSIÓN ALCALINA</th>
<th>T° DE GELATINIZACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grado 1</td>
<td>Grano de Arroz inalterado.</td>
<td>ALTA</td>
</tr>
<tr>
<td>Grado 2</td>
<td>Grano hinchado</td>
<td>ALTA</td>
</tr>
<tr>
<td>Grado 3</td>
<td>Grano hinchado con fisuras leves.</td>
<td>ALTA</td>
</tr>
<tr>
<td>Grado 4</td>
<td>Grano un poco agrietado, con un halo blanquece alrededor.</td>
<td>INTERMEDIA</td>
</tr>
<tr>
<td>Grado 5</td>
<td>Grano totalmente abierto, en ocasiones formando una gran masa de dispersión alrededor suyo.</td>
<td>INTERMEDIA</td>
</tr>
<tr>
<td>Grado 6</td>
<td>Grano casi totalmente desintegrado, difícilmente se observa su forma.</td>
<td>BAJA</td>
</tr>
<tr>
<td>Grado 7</td>
<td>Grano totalmente desintegrado, frecuentemente se observan únicamente los embriones.</td>
<td>BAJA</td>
</tr>
</tbody>
</table>

GRADO DE DISPERSIÓN 1, 2 Y 3: Temperatura de gelatinización alta (A) entre 74 y 80°C.
GRADO DE DISPERSIÓN 4 y 5: Temperatura de gelatinización Intermedia (I) entre 69 a 73°C.
GRADO DE DISPERSIÓN 6 y 7: Temperatura de gelatinización baja (B) entre 63 y 68°C.
GRADO ESCALA 1 al 7

4.2.4. ANÁLISIS ECONOMICOS

Para determinar el análisis económico se elaboró el costo de producción de cada uno de los tratamientos, expresado en nuevos soles por hectárea, se determinó el análisis de la rentabilidad y la relación costo - beneficio.
V. RESULTADOS.

Los resultados obtenidos en el presente trabajo de investigación se muestran, en orden cronológico los cuadros que a continuación se indican para cada uno de los parámetros evaluados.

5.1. DIAS AL 50% DE FLORACIÓN.

CUADRO No. 07: ANÁLISIS DE VARIANZA PARA EL PROMEDIO DÍAS AL 50% DE FLORACIÓN POR TRATAMIENTO.

<table>
<thead>
<tr>
<th>FUENTE VARIABILIDAD</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>F.C</th>
<th>SIGNIFICANCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetición</td>
<td>2</td>
<td>6.700</td>
<td>3.350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variedades (V)</td>
<td>3</td>
<td>795.00</td>
<td>265.00</td>
<td>353.333</td>
<td>**</td>
</tr>
<tr>
<td>Error</td>
<td>6</td>
<td>4.500</td>
<td>0.750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ep.Cosecha (C)</td>
<td>4</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>N.S.</td>
</tr>
<tr>
<td>Interac. V x C</td>
<td>12</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>N.S.</td>
</tr>
<tr>
<td>Error</td>
<td>32</td>
<td>16.800</td>
<td>0.525</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>59</td>
<td>823.800</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X = 103.50 C.V. = 0.7% R² = 97.40%

(N.S.) = No significativo (**) = Altamente Significativo.
CUADRO No. 08: PRUEBA MULTIPLE DE DUNCAN PARA EL PROMEDIO DIAS AL 50% DE FLORACIÓN POR TRATAMIENTO.

<table>
<thead>
<tr>
<th>ORDEN MERTO</th>
<th>TRATAMIENTOS</th>
<th>PROMEDIO DIAS AL 50% FLORACIÓN</th>
<th>SIGNIFICANCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T16 LINEA CT 10310, 30 DDD 50% de floración</td>
<td>98.00</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>T17 LINEA CT 10310 35 DDD 50% de floración</td>
<td>98.00</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>T18 LINEA CT 10310 40 DDD 50% de floración</td>
<td>98.00</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>T19 LINEA CT 10310 45 DDD 50% de floración</td>
<td>98.00</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>T20 LINEA CT 10310 50 DDD 50% de floración</td>
<td>98.00</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td>T6 SELVA ALTA 30 DDD 50% de floración</td>
<td>103.00</td>
<td>B</td>
</tr>
<tr>
<td>7</td>
<td>T7 SELVA ALTA, 35 DDD 50% de floración</td>
<td>103.00</td>
<td>B</td>
</tr>
<tr>
<td>8</td>
<td>T8 SELVA ALTA, 40 DDD 50% de floración</td>
<td>103.00</td>
<td>B</td>
</tr>
<tr>
<td>9</td>
<td>T9 SELVA ALTA, 45 DDD 50% de floración</td>
<td>103.00</td>
<td>B</td>
</tr>
<tr>
<td>10</td>
<td>T10 SELVA ALTA, 50 DDD 50% de floración</td>
<td>103.00</td>
<td>B</td>
</tr>
<tr>
<td>11</td>
<td>T1 CAPIRONA, 30 DDD 50% de floración</td>
<td>105.00</td>
<td>C</td>
</tr>
<tr>
<td>12</td>
<td>T2 CAPIRONA, 35 DDD 50% de floración</td>
<td>105.00</td>
<td>C</td>
</tr>
<tr>
<td>13</td>
<td>T3 CAPIRONA, 40 DDD 50% de floración</td>
<td>105.00</td>
<td>C</td>
</tr>
<tr>
<td>14</td>
<td>T4 CAPIRONA, 45 DDD 50% de floración</td>
<td>105.00</td>
<td>C</td>
</tr>
<tr>
<td>15</td>
<td>T5 CAPIRONA, 50 DDD 50% de floración</td>
<td>105.00</td>
<td>C</td>
</tr>
<tr>
<td>16</td>
<td>T11 INIA 501 Bijao, 30 DDD 50% de floración</td>
<td>108.00</td>
<td>D</td>
</tr>
<tr>
<td>17</td>
<td>T12 INIA 501 Bijao, 35 DDD 50% de floración</td>
<td>108.00</td>
<td>D</td>
</tr>
<tr>
<td>18</td>
<td>T13 INIA 501 Bijao, 40 DDD 50% de floración</td>
<td>108.00</td>
<td>D</td>
</tr>
<tr>
<td>19</td>
<td>T14 INIA 501 Bijao, 45 DDD 50% de floración</td>
<td>108.00</td>
<td>D</td>
</tr>
<tr>
<td>20</td>
<td>T15 INIA 501 Bijao, 50 DDD 50% de floración</td>
<td>108.00</td>
<td>D</td>
</tr>
</tbody>
</table>

Los Tratamientos signados con la misma letra no son significativos.
CUADRO No. 09: PRUEBA MULTIPLE DE DUNCAN PARA EL EFECTO DEL FACTOR A (VARIEDADES) PARA EL PROMEDIO DIAS AL 50% DE FLORACIÓN.

<table>
<thead>
<tr>
<th>ORDEN</th>
<th>VARIEDADES</th>
<th>PROMEDIO DIAS AL 50% DE FLORACIÓN</th>
<th>SIGNIFICANCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V4 (LINEA CTI0310)</td>
<td>98.0</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>V2 (SELVA ALTA)</td>
<td>103.0</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>V1 (CAPIRONA)</td>
<td>105.0</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>V3 (INIA 501-6LUAO)</td>
<td>108.0</td>
<td>D</td>
</tr>
</tbody>
</table>

Existe Diferencia Significativa entre las variedades.

5.2. FERTILIDAD O ESTERILIDAD DE ESPIGUILAS.

CUADRO No. 10: ANÁLISIS DE VARIANZA PARA LA FERTILIDAD O ESTERILIDAD DE ESPIGUILAS EN PORCENTAJE POR TRATAMIENTO (Datos originales transformados a Arco Seno Vx).

<table>
<thead>
<tr>
<th>FUENTE DE VARIABILIDAD</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M</th>
<th>P.C.</th>
<th>SIGNIFICANCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetición</td>
<td>2</td>
<td>0.732</td>
<td>0.366</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Variedades (V)</td>
<td>3</td>
<td>1012.777</td>
<td>337.592</td>
<td>45.4378</td>
<td>**</td>
</tr>
<tr>
<td>Error</td>
<td>6</td>
<td>44.579</td>
<td>7.430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ep.Cosecha(C)</td>
<td>4</td>
<td>205.367</td>
<td>51.342</td>
<td>13.0281</td>
<td>**</td>
</tr>
<tr>
<td>Interac. V x C</td>
<td>12</td>
<td>135.652</td>
<td>11.304</td>
<td>2.3685</td>
<td>**</td>
</tr>
<tr>
<td>Error</td>
<td>32</td>
<td>126.108</td>
<td>3.941</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>59</td>
<td>1525.215</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X² = 86.79 C.V. = 2.29% R² = 88.81%

(*** = Altamente Significativo)
CUADRO No. 11: PRUEBA MÚLTIPLE DE DUNCAN PARA LA FERTILIDAD O ESTERILIDAD DE ESPIGUILLAS EN PORCENTAJE POR TRATAMIENTO.

<table>
<thead>
<tr>
<th>ORDEN MERITO</th>
<th>TRATAMIENTOS</th>
<th>PROMEDIO EN %</th>
<th>PROMEDIO EN GRADO</th>
<th>SIGNIFICANCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T3 SELVA ALTA 40 DDD, 50% de floración</td>
<td>93.78</td>
<td>01</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>T7 SELVA ALTA 35 DDD 50% de floración</td>
<td>92.97</td>
<td>01</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>T9 SELVA ALTA 45 DDD 50% de floración</td>
<td>92.24</td>
<td>01</td>
<td>AB</td>
</tr>
<tr>
<td>4</td>
<td>T10 SELVA ALTA 50 DDD 50% de floración</td>
<td>92.23</td>
<td>01</td>
<td>AB</td>
</tr>
<tr>
<td>5</td>
<td>T5 CAPIRONA 50 DDD 50% de floración</td>
<td>91.74</td>
<td>01</td>
<td>AB</td>
</tr>
<tr>
<td>6</td>
<td>T3 CAPIRONA 30 DDD 50% de floración</td>
<td>91.61</td>
<td>01</td>
<td>AB</td>
</tr>
<tr>
<td>7</td>
<td>T4 CAPIRONA 45 DDD 50% de floración</td>
<td>91.40</td>
<td>01</td>
<td>AB</td>
</tr>
<tr>
<td>8</td>
<td>T2 CAPIRONA 35 DDD 50% de floración</td>
<td>88.82</td>
<td>03</td>
<td>BC</td>
</tr>
<tr>
<td>9</td>
<td>T15 INIA 501 (Bajo) 50 DDD 50% de floración</td>
<td>86.71</td>
<td>03</td>
<td>CD</td>
</tr>
<tr>
<td>10</td>
<td>T14 INIA 501 (Bajo) 45 DDD 50% de floración</td>
<td>86.09</td>
<td>03</td>
<td>CDE</td>
</tr>
<tr>
<td>11</td>
<td>T13 INIA 501 (Bajo) 40 DDD 50% de floración</td>
<td>85.84</td>
<td>03</td>
<td>CDE</td>
</tr>
<tr>
<td>12</td>
<td>T6 SELVA ALTA 30 DDD 50% de floración</td>
<td>85.12</td>
<td>03</td>
<td>DEF</td>
</tr>
<tr>
<td>13</td>
<td>T1 CAPIRONA 30 DDD 50% de floración</td>
<td>84.80</td>
<td>03</td>
<td>DEF</td>
</tr>
<tr>
<td>14</td>
<td>T11 INIA 501 (Bajo) 30 DDD 50% de floración</td>
<td>84.77</td>
<td>03</td>
<td>DEF</td>
</tr>
<tr>
<td>15</td>
<td>T12 INIA 501 (Bajo) 35 DDD 50% de floración</td>
<td>84.52</td>
<td>03</td>
<td>DEF</td>
</tr>
<tr>
<td>16</td>
<td>T19 LINEA CT 10310 45 DDD 50% de floración</td>
<td>82.92</td>
<td>03</td>
<td>DEF</td>
</tr>
<tr>
<td>17</td>
<td>T17 LINEA CT 10310 35 DDD 50% de floración</td>
<td>82.75</td>
<td>03</td>
<td>EF</td>
</tr>
<tr>
<td>18</td>
<td>T18 LINEA CT 10310 40 DDD 50% de floración</td>
<td>81.75</td>
<td>03</td>
<td>F</td>
</tr>
<tr>
<td>19</td>
<td>T16 LINEA CT 10310 30 DDD 50% de floración</td>
<td>78.16</td>
<td>03</td>
<td>G</td>
</tr>
<tr>
<td>20</td>
<td>T20 LINEA CT 10310 30 DDD 50% de floración</td>
<td>77.66</td>
<td>03</td>
<td>G</td>
</tr>
</tbody>
</table>

(DDD) = Días de Floración = Días Después del 50% de floración.

Los Tratamientos signados con la misma letra no son significativos entre sí.
CUADRO No. 12: PRUEBA MULTIPLE DE DUNCAN PARA EL EFECTO DEL FACTOR A (VARIEDAD) PARA EL PROMEDIO EN PORCENTAJE DE FERTILIDAD O ESTERILIDAD DE ESPIGUILLAS.

<table>
<thead>
<tr>
<th>ORDEN MERITO</th>
<th>VARIEDADES</th>
<th>PROMEDIO EN % FERTILIDAD O ESTERILIDAD</th>
<th>SIGNIFICANCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V2 (SELVA ALTA)</td>
<td>91.27</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>V1 (CAPIRONA)</td>
<td>89.67</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>V3 (INIA 501 Bijao)</td>
<td>85.58</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>V4 (LINEA CT 10310)</td>
<td>80.65</td>
<td>C</td>
</tr>
</tbody>
</table>

Existe Diferencia Significativa entre las variedades.

CUADRO No. 13: PRUEBA MULTIPLE DE DUNCAN PARA EL EFECTO DEL FACTOR (EPOCAS DE COSECHA) PARA EL PORCENTAJE O ESTERILIDAD DE ESPIGUILLAS.

<table>
<thead>
<tr>
<th>ORDEN MERITO</th>
<th>EPOCAS DE COSECHA</th>
<th>PROMEDIO EN % FERTILIDAD O ESTERILIDAD</th>
<th>SIGNIFICANCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C3: 40 días después del 50% de floración</td>
<td>88.25</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>C4: 45 días después del 50% de floración</td>
<td>88.16</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>C2: 35 días después del 50% de floración</td>
<td>87.26</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>C5: 50 días después del 50% de floración</td>
<td>87.09</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>C1: 30 días después del 50% de floración</td>
<td>83.21</td>
<td>B</td>
</tr>
</tbody>
</table>

Existe Diferencia Significativa entre las Epocas de Cosecha.
5.3. RENDIMIENTO DE ARROZ CÁSCARA (t/ha).

CUADRO No. 14: ANÁLISIS DE VARIANZA PARA EL PROMEDIO EN RENDIMIENTO DE ARROZ POR TRATAMIENTO.

<table>
<thead>
<tr>
<th>FUENTE VARIABILIDAD</th>
<th>G.L.</th>
<th>S.C.</th>
<th>C.M.</th>
<th>F.C.</th>
<th>SIGNIFICANCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetición</td>
<td>2</td>
<td>70 288.480</td>
<td>35 144.240</td>
<td>6.4670</td>
<td></td>
</tr>
<tr>
<td>Variedades (V)</td>
<td>3</td>
<td>8 727 901.112</td>
<td>2 909 300.371</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>6</td>
<td>2 699 227.299</td>
<td>449 871.217</td>
<td>14.2814</td>
<td></td>
</tr>
<tr>
<td>Ep. Cosech (C)</td>
<td>4</td>
<td>9 718 928.993</td>
<td>2 429 732.248</td>
<td>1.2587</td>
<td>**</td>
</tr>
<tr>
<td>Interac. (Vx C)</td>
<td>12</td>
<td>2 569 707.038</td>
<td>214 142.253</td>
<td></td>
<td>N.S.</td>
</tr>
<tr>
<td>Error</td>
<td>32</td>
<td>5 444 237.498</td>
<td>170 132.422</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>59</td>
<td>292 30290.420</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X = 7212.358 C.V. = 5.72% R² = 72.14%

(N.S.) = No Significativo (*) = Significativo (**) = Altamente significativo
CUADRO No. 15: PRUEBA MÚLTIPLE DE DUNCAN PARA EL PROMEDIO EN RENDIMIENTO DE ARROZ CÁSCARA POR TRATAMIENTO.

<table>
<thead>
<tr>
<th>ORDEN MERITO</th>
<th>TRATAMIENTOS</th>
<th>RENDIMIENTO DE GRANO Kg/ha</th>
<th>SIGNIFICANCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T10 SELVA ALTA; 50 DDD 50% de floración</td>
<td>8450</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>T8 SELVA ALTA; 40 DDD 50% de floración</td>
<td>8088</td>
<td>AB</td>
</tr>
<tr>
<td>3</td>
<td>T7 SELVA ALTA, 35 DDD 50% de floración</td>
<td>7917</td>
<td>ABC</td>
</tr>
<tr>
<td>4</td>
<td>T9 SELVA ALTA, 45 DDD 50 de floración</td>
<td>7785</td>
<td>ABCD</td>
</tr>
<tr>
<td>5</td>
<td>T5 CAPIRONA; 50 DDD 50 de floración</td>
<td>7599</td>
<td>BCDE</td>
</tr>
<tr>
<td>6</td>
<td>T18 LINEA CT 10310, 40 DDD 50% de floración</td>
<td>7447</td>
<td>BCDEF</td>
</tr>
<tr>
<td>7</td>
<td>T13 INIA 501 (Bijaq),40 DDD, 50% de floración</td>
<td>7428</td>
<td>BCDEF</td>
</tr>
<tr>
<td>8</td>
<td>T3 CAPIRONA, 40 DDD, 50% de floración</td>
<td>7384</td>
<td>BCDEFG</td>
</tr>
<tr>
<td>9</td>
<td>T2 CAPIRONA, 35 DDD, 50% de floración</td>
<td>7293</td>
<td>CDEFG</td>
</tr>
<tr>
<td>10</td>
<td>T14 INIA 501 (Bijaq), 45 DDD, 50% de floración</td>
<td>7176</td>
<td>CDEFG</td>
</tr>
<tr>
<td>11</td>
<td>T20 LINEA CT10310, 50 DDD, 50% de floración</td>
<td>7153</td>
<td>CDEFG</td>
</tr>
<tr>
<td>12</td>
<td>T4 CAPIRONA, 45 DDD, 50% de floración</td>
<td>7130</td>
<td>CDEFG</td>
</tr>
<tr>
<td>13</td>
<td>T19 LINEA CT 10310, 45 DDD 50% de floración</td>
<td>7119</td>
<td>CDEFG</td>
</tr>
<tr>
<td>14</td>
<td>T6 SELVA ALTA; 30 DDD 50% de floración</td>
<td>7043</td>
<td>DEFG</td>
</tr>
<tr>
<td>15</td>
<td>T15 INIA 501 (Bijaq), 50 DDD 50% de floración</td>
<td>6920</td>
<td>EFGH</td>
</tr>
<tr>
<td>16</td>
<td>T17 LINEA CT 10310;35DDD 50% de floración</td>
<td>6909</td>
<td>EFGH</td>
</tr>
<tr>
<td>17</td>
<td>T11 INIA 501 (Bijaq) 30 DDD 50% de floración</td>
<td>6689</td>
<td>GH</td>
</tr>
<tr>
<td>18</td>
<td>T12 INIA 501 (Bijaq), 35 DDD 50% de floración</td>
<td>6591</td>
<td>GHI</td>
</tr>
<tr>
<td>19</td>
<td>T1 CAPIRONA, 30 DDD 50% de floración</td>
<td>6244</td>
<td>HI</td>
</tr>
<tr>
<td>20</td>
<td>T16 LINEA CT 10310, 30 DDD 50% de floración</td>
<td>5882</td>
<td>I</td>
</tr>
</tbody>
</table>

DDD 50% de Floración = Dias Después del 50% de Floración
Los tratamientos signados con la misma letra no son significativos entre sí.
CUADRO No. 16: PRUEBA MULTIPLE DE DUNCAN PARA EL EFECTO DEL FACTOR A (VARIEDAD) PARA EL PROMEDIO EN RENDIMIENTO DE ARROZ CÁSCARA.

<table>
<thead>
<tr>
<th>ORDEN MERITO</th>
<th>VARIEDADES</th>
<th>PROMEDIO EN RENDIMIENTO ARROZ CÁSCARA (Kg/ha)</th>
<th>SIGNIFICANCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V2 (SELVA ALTA)</td>
<td>7857</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>V1 (CAPIRONA)</td>
<td>7130</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>V3 (INIA 501 Bijo)</td>
<td>6960</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>V4 (LíNEA CT 10310)</td>
<td>6902</td>
<td>B</td>
</tr>
</tbody>
</table>

Existe Diferencia Significativa entre las Variedades V2 con las demás.

CUADRO No. 17: PRUEBA MULTIPLE DE DUNCAN PARA EL EFECTO DEL FACTOR B (EPOCA DE COSECHA) PARA EL PROMEDIO EN RENDIMIENTO DE ARROZ CÁSCARA.

<table>
<thead>
<tr>
<th>ORDEN MERITO</th>
<th>EPOCAS DE COSECHA</th>
<th>PROMEDIO EN RENDIMIENTO ARROZ CÁSCARA (Kg/ha)</th>
<th>SIGNIFICANCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C3 40 días después del 50% de floración</td>
<td>7587</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>C5 50 días después del 50% de floración</td>
<td>7531</td>
<td>AB</td>
</tr>
<tr>
<td>3</td>
<td>C4 45 días después del 50% de floración</td>
<td>7303</td>
<td>AB</td>
</tr>
<tr>
<td>4</td>
<td>C2 35 días después del 50% de floración</td>
<td>7177</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>C1 30 días después del 50% de floración</td>
<td>6465</td>
<td>C</td>
</tr>
</tbody>
</table>

Existe Diferencia Significativa entre las Épocas de Cosecha.
5.4. **REN DIMIENTO MOLINERO (GRANO ENTERO)**

CUADRO No. 18: **ANÁLISIS DE VARIANZA PARA EL PROMEDIO DE GRANO ENTERO EN PORCENTAJE POR TRATAMIENTO.**

<table>
<thead>
<tr>
<th>FUENTE VARIABILIDAD</th>
<th>G.L.</th>
<th>C.M.</th>
<th>F.C.</th>
<th>SIGNIFICANCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetición</td>
<td>2</td>
<td>241.484</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variedades (V)</td>
<td>3</td>
<td>65.133</td>
<td>1.0828</td>
<td>N.S.</td>
</tr>
<tr>
<td>Error</td>
<td>6</td>
<td>60.152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ep. Cosecha (C)</td>
<td>4</td>
<td>17.9912</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Interac. V x C</td>
<td>12</td>
<td>9.3261</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>32</td>
<td>2.227</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>59</td>
<td>1,519.946</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
X = 51.638 \quad \text{C.V.} = 2.89\% \quad R^2 = 71.37
\]

(N.S) = No significativo \quad (***) = Altamente significativo.
CUADRO No. 19: PRUEBA MÚLTIPLA DE DUNCAN PARA EL PROMEDIO DE GRANO ENTERO EN PORCENTAJE POR TRATAMIENTO.

<table>
<thead>
<tr>
<th>ORDEN MERITO</th>
<th>TRATAMIENTOS</th>
<th>PROMEDIO EN % DE GRANO ENTERO</th>
<th>SIGNIFICANCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T12 INIA 501 Bijao 35 DDD 50% de floración</td>
<td>60.09</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>T11 INIA 501 Bijao 30 DDD 50% de floración</td>
<td>60.05</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>T18 LINEA CT 10310, 40 DDD 50% de floración</td>
<td>53.38</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>T3 CAPIRONA 40 DDD 50% de floración</td>
<td>52.93</td>
<td>BC</td>
</tr>
<tr>
<td>5</td>
<td>T19 LINEA CT 10310 45 DDD 50% de floración</td>
<td>52.73</td>
<td>BCD</td>
</tr>
<tr>
<td>6</td>
<td>T2 CAPIRONA 35 DDD 50% de floración</td>
<td>52.43</td>
<td>BCD</td>
</tr>
<tr>
<td>7</td>
<td>T13 INIA 501 Bijao, 40 DDD 50% de floración</td>
<td>52.51</td>
<td>BCDE</td>
</tr>
<tr>
<td>8</td>
<td>T7 SELVA ALTA, 35 DDD 50% de floración</td>
<td>51.51</td>
<td>BCDEF</td>
</tr>
<tr>
<td>9</td>
<td>T14 INIA 501 Bijao, 45 DDD 50% de floración</td>
<td>51.17</td>
<td>BCDEF</td>
</tr>
<tr>
<td>10</td>
<td>T1 CAPIRONA, 30 DDD 50% de floración</td>
<td>51.13</td>
<td>BCDEF</td>
</tr>
<tr>
<td>11</td>
<td>T17 LINEA CT10310, 35 DDD 50% de floración</td>
<td>50.91</td>
<td>BCDEF</td>
</tr>
<tr>
<td>12</td>
<td>T8 SELVA ALTA, 40 DDD 50% de floración</td>
<td>50.05</td>
<td>CDEFG</td>
</tr>
<tr>
<td>13</td>
<td>T6 SELVA ALTA, 30 DDD 50% de floración</td>
<td>50.02</td>
<td>DEFG</td>
</tr>
<tr>
<td>14</td>
<td>T5 CAPIRONA, 50 DDD 50% de floración</td>
<td>50.01</td>
<td>EFG</td>
</tr>
<tr>
<td>15</td>
<td>T16 LINEA CT10310, 30 DDD 50% de floración</td>
<td>49.49</td>
<td>FG</td>
</tr>
<tr>
<td>16</td>
<td>T15 INIA 501 Bijao, 50 DDD 50% de floración</td>
<td>49.39</td>
<td>FG</td>
</tr>
<tr>
<td>17</td>
<td>T20 LINEA CT10310, 50 DDD 50% de floración</td>
<td>49.33</td>
<td>FG</td>
</tr>
<tr>
<td>18</td>
<td>T9 SELVA ALTA, 45 DDD 50% de floración</td>
<td>49.16</td>
<td>FG</td>
</tr>
<tr>
<td>19</td>
<td>T4 CAPIRONA, 45 DDD 50% de floración</td>
<td>48.81</td>
<td>FG</td>
</tr>
<tr>
<td>20</td>
<td>T10 SELVA ALTA 50 DDD 50% de floración</td>
<td>47.85</td>
<td>G</td>
</tr>
</tbody>
</table>
CUADRO No. 20
PRUEBA MULTIPLE DE DUNCAN PARA EL EFECTO DEL FACTOR B (EPOCAS DE COSECHA) PARA EL PROMEDIO EN PORCENTAJE PARA EL GRANO ENTERO.

<table>
<thead>
<tr>
<th>ORDEN MERITO</th>
<th>EPOCAS DE COSECHA</th>
<th>PROMEDIO EN % DE GRANO ENTERO</th>
<th>SIGNIFICANCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C2: 35 días después del 50% de floración</td>
<td>53.74</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>C1: 30 días después del 50% de floración</td>
<td>52.67</td>
<td>AB</td>
</tr>
<tr>
<td>3</td>
<td>C3: 40 días después del 50% de floración</td>
<td>52.17</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>C4: 45 días después del 50% de floración</td>
<td>50.47</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>C5: 50 días después del 50% de floración</td>
<td>49.14</td>
<td>D</td>
</tr>
</tbody>
</table>

Existe Diferencia significativa entre las épocas de cosechas.

5.5. RENDIMIENTO MOLINERO (PILA TOTAL)

CUADRO No. 21: ANÁLISIS DE VARIANZA PARA EL PROMEDIO DE PILA TOTAL EN PORCENTAJE POR TRATAMIENTO.

<table>
<thead>
<tr>
<th>FUENTE VARIABILIDAD</th>
<th>G.L</th>
<th>S.C.</th>
<th>C.M.</th>
<th>F.C.</th>
<th>SIGNIFICANCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetición</td>
<td>2</td>
<td>105.619</td>
<td>52.810</td>
<td>6.0242</td>
<td>*</td>
</tr>
<tr>
<td>Variedades (V)</td>
<td>3</td>
<td>170.870</td>
<td>56.957</td>
<td>9.455</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>6</td>
<td>56.728</td>
<td>9.455</td>
<td>10.8483</td>
<td>**</td>
</tr>
<tr>
<td>Ep. Cosecha (C)</td>
<td>4</td>
<td>41.043</td>
<td>10.261</td>
<td>10.8483</td>
<td></td>
</tr>
<tr>
<td>Interac. V x C</td>
<td>12</td>
<td>8.463</td>
<td>0.705</td>
<td>0.7456</td>
<td>N.S.</td>
</tr>
<tr>
<td>Error</td>
<td>32</td>
<td>30.267</td>
<td>0.946</td>
<td>0.7456</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>59</td>
<td>412.989</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X = 70.30 C.V. = 1.38% R² = 78.90%
(N.S) = No significativo (*) = Significativo (**) = Altamente significativo.
CUADRO No. 22: PRUEBA MÚLTIPLE DE DUNCAN PARA EL PROMEDIO DE PILA TOTAL EN PORCENTAJE POR TRATAMIENTO.

<table>
<thead>
<tr>
<th>ORDEN MUESTRA</th>
<th>TRATAMIENTOS</th>
<th>PROMEDIO EN % DE PILA TOTAL</th>
<th>SIGNIFICANCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T15 INIA 501 Bijao, 50 DDD 50% de floración</td>
<td>74.00</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>T14 INIA 501 Bijao, 45 DDD 50% de floración</td>
<td>73.87</td>
<td>AB</td>
</tr>
<tr>
<td>3</td>
<td>T12 INIA 501 Bijao, 35 DDD 50% de floración</td>
<td>72.93</td>
<td>AB</td>
</tr>
<tr>
<td>4</td>
<td>T13 INIA 501 Bijao, 40 DDD 50% de floración</td>
<td>72.87</td>
<td>AB</td>
</tr>
<tr>
<td>5</td>
<td>T11 INIA 501 Bijao, 30 DDD 50% de floración</td>
<td>72.13</td>
<td>BC</td>
</tr>
<tr>
<td>6</td>
<td>T4 CAPIRONA, 45 DDD 50% de floración</td>
<td>70.70</td>
<td>CD</td>
</tr>
<tr>
<td>7</td>
<td>T10 SELVA ALTA, 50 DDD 50% de floración</td>
<td>70.57</td>
<td>CD</td>
</tr>
<tr>
<td>8</td>
<td>T5 CAPIRONA, 50 DDD 50% de floración</td>
<td>70.47</td>
<td>CD</td>
</tr>
<tr>
<td>9</td>
<td>T8 SELVA ALTA, 40 DDD 50% de floración</td>
<td>70.13</td>
<td>DE</td>
</tr>
<tr>
<td>10</td>
<td>T3 CAPIRONA, 40 DDD 50% de floración</td>
<td>70.13</td>
<td>DE</td>
</tr>
<tr>
<td>11</td>
<td>T9 SELVA ALTA, 45 DDD 50% de floración</td>
<td>69.93</td>
<td>DE</td>
</tr>
<tr>
<td>12</td>
<td>T2 CAPIRONA, 35 DDD 50% de floración</td>
<td>69.87</td>
<td>DE</td>
</tr>
<tr>
<td>13</td>
<td>T18 LINEA CT, 40 DDD 50% de floración</td>
<td>69.70</td>
<td>DE</td>
</tr>
<tr>
<td>14</td>
<td>T7 SELVA ALTA, 35 DDD 50% de floración</td>
<td>69.43</td>
<td>DEF</td>
</tr>
<tr>
<td>15</td>
<td>T20 LINEA CT, 50 DDD 50% de floración</td>
<td>69.43</td>
<td>DEF</td>
</tr>
<tr>
<td>16</td>
<td>T19 LINEA CT, 45 DDD 50% de floración</td>
<td>68.57</td>
<td>EFG</td>
</tr>
<tr>
<td>17</td>
<td>T17 LINEA CT, 40 DDD 50% de floración</td>
<td>68.43</td>
<td>EFG</td>
</tr>
<tr>
<td>18</td>
<td>T16 LINEA CT, 35 DDD 50% de floración</td>
<td>67.73</td>
<td>FG</td>
</tr>
<tr>
<td>19</td>
<td>T6 SELVA ALTA, 30 DDD 50% de floración</td>
<td>67.67</td>
<td>FG</td>
</tr>
<tr>
<td>20</td>
<td>T1 CAPIRONA, 30 DDD 50% de floración</td>
<td>67.53</td>
<td>G</td>
</tr>
</tbody>
</table>

Los Tratamientos signados con la misma letra no son significativos entre sí.
CUADRO No. 23: PRUEBA MULTIPLE DE DUNCAN PARA EL EFEITO DEL FACTOR A (VARIEDAD) PARA EL PROMEDIO EN PORCENTAJE DE PILA TOTAL.

<table>
<thead>
<tr>
<th>ORDEN MERITO</th>
<th>VARIEDAD</th>
<th>PROMEDIO % DE PILA TOTAL</th>
<th>SIGNIFICANCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V3 (INIA 501 Bijao)</td>
<td>73.16</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>V1 (CAPRONA)</td>
<td>69.74</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>V2 (SELVA ALTA)</td>
<td>69.55</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>V4 (LINEA CT 10310)</td>
<td>68.77</td>
<td>B</td>
</tr>
</tbody>
</table>

Existe diferencia significativa entre la variedad (V3) con respecto a los demás.

CUADRO No. 24: PRUEBA MULTIPLE DE DUNCAN PARA EL EFEITO DEL FACTOR B (EPOCAS DE COSECHAS) PARA EL PROMEDIO EN PORCENTAJE DE PILA TOTAL.

<table>
<thead>
<tr>
<th>ORDEN MERITO</th>
<th>EPOCA DE COSECHA</th>
<th>PROMEDIO % DE PILA TOTAL</th>
<th>SIGNIFICANCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C5 50 días después del 50% de floración</td>
<td>71.12</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>C4 45 días después del 50% de floración</td>
<td>70.77</td>
<td>AB</td>
</tr>
<tr>
<td>3</td>
<td>C3 40 días después del 50% de floración</td>
<td>70.71</td>
<td>AB</td>
</tr>
<tr>
<td>4</td>
<td>C2 35 días después del 50% de floración</td>
<td>70.17</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>C1 30 días después del 50% de floración</td>
<td>68.77</td>
<td>C</td>
</tr>
</tbody>
</table>

Existe diferencia significativa entre las épocas de cosechas.
5.6. **GRADO DE OPACIDAD DEL ENDOSPERMA**

CUADRO No. 25: ANÁLISIS DE VARIANZA PARA EL PROMEDIO DE GRADO DE OPACIDAD DEL ENDOSPERMO POR TRATAMIENTO
(Datos transformados : Vx)

<table>
<thead>
<tr>
<th>FUENTE VARIABILIDAD</th>
<th>G.L.</th>
<th>S.G.</th>
<th>C.M.</th>
<th>F.C.</th>
<th>SIGNIFICANCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetición</td>
<td>2</td>
<td>0.006</td>
<td>0.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variedades (V)</td>
<td>3</td>
<td>14.944</td>
<td>4.981</td>
<td>814.2885</td>
<td>**</td>
</tr>
<tr>
<td>Error</td>
<td>6</td>
<td>0.037</td>
<td>0.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ep. Cosecha (C)</td>
<td>4</td>
<td>0.333</td>
<td>0.083</td>
<td>14.0264</td>
<td>**</td>
</tr>
<tr>
<td>Interac. V x C</td>
<td>12</td>
<td>0.581</td>
<td>0.048</td>
<td>8.1474</td>
<td>**</td>
</tr>
<tr>
<td>Error</td>
<td>32</td>
<td>0.190</td>
<td>0.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>59</td>
<td>16.091</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[X = 0.50 \]
\[C.V. = 15.23\% \]
\[R^2 = 98.60\% \]

\((**\) = Altamente Significativo\)
CUADRO No. 26: PRUEBA MULTIPLE DE DUNCAN PARA EL PROMEDIO DEL GRADO DE OPACIDAD DEL ENDOSPERMO POR TRATAMIENTO.

<table>
<thead>
<tr>
<th>ORDEN MERITO</th>
<th>TRATAMIENTOS</th>
<th>PROMEDIO DEL GRADO DE OPACIDAD DEL ENDOSPERMO</th>
<th>SIGNIFICANCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T12 INIA 501 Bijao, 35 DDD, 50% de floración</td>
<td>0.100</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>T11 INIA 501 Bijao 30 DDD 50% floración</td>
<td>0.120</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>T1 CAPIRONA, 30 DDD 50% de floración</td>
<td>0.123</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>T6 SELVA ALTA, 30 DDD 50% de floración</td>
<td>0.137</td>
<td>AB</td>
</tr>
<tr>
<td>5</td>
<td>T7 SELVA ALTA, 35 DDD 50% de floración</td>
<td>0.147</td>
<td>ABC</td>
</tr>
<tr>
<td>6</td>
<td>T9 SELVA ALTA, 45 DDD 50% de floración</td>
<td>0.147</td>
<td>ABC</td>
</tr>
<tr>
<td>7</td>
<td>T8 SELVA ALTA, 40 DDD 50% de floración</td>
<td>0.173</td>
<td>ABC</td>
</tr>
<tr>
<td>8</td>
<td>T13 INIA 501 Bijao, 40 DDD 50% floración</td>
<td>0.173</td>
<td>ABCD</td>
</tr>
<tr>
<td>9</td>
<td>T10 SELVA ALTA 50 DDD 50% de floración</td>
<td>0.187</td>
<td>ABCD</td>
</tr>
<tr>
<td>10</td>
<td>T15 INIA 501 Bijao 50 DDD 50% de floración</td>
<td>0.280</td>
<td>BCDE</td>
</tr>
<tr>
<td>11</td>
<td>T4 CAPIRONA, 45 DDD 50% de floración</td>
<td>0.293</td>
<td>CDE</td>
</tr>
<tr>
<td>12</td>
<td>T3 CAPIRONA, 40 DDD 50% de floración</td>
<td>0.320</td>
<td>DE</td>
</tr>
<tr>
<td>13</td>
<td>T14 INIA 501 Bijao 45 DDD 50% de floración</td>
<td>0.333</td>
<td>E</td>
</tr>
<tr>
<td>14</td>
<td>T2 CAPIRONA, 35 DDD 50% de floración</td>
<td>0.373</td>
<td>E</td>
</tr>
<tr>
<td>15</td>
<td>T5 CAPIRONA, 50 DDD 50% de floración</td>
<td>0.387</td>
<td>E</td>
</tr>
<tr>
<td>16</td>
<td>T16 LINEA CT 10310, 30 DDD 50% de floración</td>
<td>1.110</td>
<td>F</td>
</tr>
<tr>
<td>17</td>
<td>T18 LINEA CT 10310, 40 DDD 50% de floración</td>
<td>1.293</td>
<td>G</td>
</tr>
<tr>
<td>18</td>
<td>T19 LINEA CT 10310, 45 DDD 50% de floración</td>
<td>1.333</td>
<td>G</td>
</tr>
<tr>
<td>19</td>
<td>T20 LINEA CT 10310, 50 DDD 50% de floración</td>
<td>1.347</td>
<td>G</td>
</tr>
<tr>
<td>20</td>
<td>T17 LINEA CT 10310, 35 DDD 50% de floración</td>
<td>1.747</td>
<td>H</td>
</tr>
</tbody>
</table>

Los tratamientos signados con la misma letra no son significativos entre sí.
CUADRO No. 27: PRUEBA MULTIPLE DE DUNCAN PARA EL EFECTO DEL FACTOR A (VARIEDADES) PARA EL PROMEDIO DEL GRADO DE OPACIDAD DEL ENDOSPERMA.

<table>
<thead>
<tr>
<th>ORDEN MERITO</th>
<th>VARIADES</th>
<th>PROMEDIO PARA EL GRADO DE OPACIDAD DEL ENDOSPERMA</th>
<th>SIGNIFICANCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V2 (SELVA ALTA)</td>
<td>0.1580</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>V3 (INIA 501 Bijao)</td>
<td>0.2010</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>V1 (CAPIRONA)</td>
<td>0.2990</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>V4 (LINEA CT 10310)</td>
<td>1.3660</td>
<td>C</td>
</tr>
</tbody>
</table>

Existe Diferencia Significativa entre las variedades.

CUADRO No. 28: PRUEBA MULTIPLE DE DUNCAN PARA EL EFECTO DEL FACTOR B (EPOCAS DE COSECHA) PARA EL PROMEDIO DEL GRADO DE OPACIDAD DEL ENDOSPERMA.

<table>
<thead>
<tr>
<th>ORDEN MERITO</th>
<th>EPOCAS DE COSECHA</th>
<th>PROMEDIO PARA EL GRADO DE OPACIDAD DEL ENDOSPERMA</th>
<th>SIGNIFICANCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C1: 30 días después del 50% de floración</td>
<td>0.1960</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>C2: 35 días después del 50% de floración</td>
<td>0.2000</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>C3: 40 días después del 50% de floración</td>
<td>0.2060</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>C4: 45 días después del 50% de floración</td>
<td>0.2170</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>C5: 50 días después del 50% de floración</td>
<td>0.2290</td>
<td>A</td>
</tr>
</tbody>
</table>

No existe diferencia significancia entre las épocas de cosecha.
5.7 DISPERSIÓN ALCALINA

CUADRO No. 29: PROMEDIO REGISTRADO PARA LA DISPERSIÓN ALCALINA

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>GRADO DE DISPERSIÓN</th>
<th>T° DE GELATINIZACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>3-4</td>
<td>INTERMEDIA/ALTA</td>
</tr>
<tr>
<td>T2</td>
<td>3-4</td>
<td>INTERMEDIA/ALTA</td>
</tr>
<tr>
<td>T3</td>
<td>3-4</td>
<td>INTERMEDIA/ALTA</td>
</tr>
<tr>
<td>T4</td>
<td>3-4</td>
<td>INTERMEDIA/ALTA</td>
</tr>
<tr>
<td>T5</td>
<td>3-4</td>
<td>INTERMEDIA/ALTA</td>
</tr>
<tr>
<td>T6</td>
<td>3-4</td>
<td>INTERMEDIA/ALTA</td>
</tr>
<tr>
<td>T7</td>
<td>3-4</td>
<td>INTERMEDIA/ALTA</td>
</tr>
<tr>
<td>T8</td>
<td>3-4</td>
<td>INTERMEDIA/ALTA</td>
</tr>
<tr>
<td>T9</td>
<td>3-4</td>
<td>INTERMEDIA/ALTA</td>
</tr>
<tr>
<td>T10</td>
<td>3-4</td>
<td>INTERMEDIA/ALTA</td>
</tr>
<tr>
<td>T11</td>
<td>5-6</td>
<td>INTERMEDIA/BAJA</td>
</tr>
<tr>
<td>T12</td>
<td>5-6</td>
<td>INTERMEDIA/BAJA</td>
</tr>
<tr>
<td>T13</td>
<td>5-6</td>
<td>INTERMEDIA/BAJA</td>
</tr>
<tr>
<td>T14</td>
<td>5-6</td>
<td>INTERMEDIA/BAJA</td>
</tr>
<tr>
<td>T15</td>
<td>5-6</td>
<td>INTERMEDIA/BAJA</td>
</tr>
<tr>
<td>T16</td>
<td>2-3-4</td>
<td>INTERMEDIA/ALTA</td>
</tr>
<tr>
<td>T17</td>
<td>2-3-4</td>
<td>INTERMEDIA/ALTA</td>
</tr>
<tr>
<td>T18</td>
<td>2-3-4</td>
<td>INTERMEDIA/ALTA</td>
</tr>
<tr>
<td>T19</td>
<td>2-3-4</td>
<td>INTERMEDIA/ALTA</td>
</tr>
<tr>
<td>T20</td>
<td>2-3-4</td>
<td>INTERMEDIA/ALTA</td>
</tr>
</tbody>
</table>

GRADO : ESCALA 1 AL 7
5.8. ANÁLISIS ECONÓMICO

CUADRO No.30: ANÁLISIS ECONÓMICO DE LOS TRATAMIENTOS EXPRESADOS EN NUEVOS SOLES Y LA RELACIÓN COSTO-BENEFICIO EXPRESADO EN PORCENTAJE PARA UNA HECTAREA DE CULTIVO DE ARROZ.

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>RENDIMIENTO (Kg/ha)</th>
<th>BENEFICIO BRUTO S/</th>
<th>COSTO PROD. S/</th>
<th>COSTO/RG S/</th>
<th>BENEFICIO NETO S/</th>
<th>RENTABILIDAD ECONOMICA %</th>
<th>COSTO/BENEFICIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>T10</td>
<td>8450</td>
<td>5070</td>
<td>2368.69</td>
<td>0.28</td>
<td>2701.31</td>
<td>114.0</td>
<td>46.7</td>
</tr>
<tr>
<td>T8</td>
<td>8088</td>
<td>4852.8</td>
<td>2362.45</td>
<td>0.29</td>
<td>2490.35</td>
<td>105.4</td>
<td>48.7</td>
</tr>
<tr>
<td>T7</td>
<td>7917</td>
<td>4750.2</td>
<td>2359.62</td>
<td>0.30</td>
<td>2390.58</td>
<td>101.3</td>
<td>49.7</td>
</tr>
<tr>
<td>T9</td>
<td>7785</td>
<td>4671.1</td>
<td>2357.35</td>
<td>0.30</td>
<td>2313.65</td>
<td>98.1</td>
<td>50.5</td>
</tr>
<tr>
<td>T5</td>
<td>7599</td>
<td>4559.4</td>
<td>2354.18</td>
<td>0.31</td>
<td>2205.22</td>
<td>93.7</td>
<td>51.6</td>
</tr>
<tr>
<td>T18</td>
<td>7447</td>
<td>4468.2</td>
<td>2351.57</td>
<td>0.32</td>
<td>2116.63</td>
<td>90.0</td>
<td>52.6</td>
</tr>
<tr>
<td>T13</td>
<td>7428</td>
<td>4459.8</td>
<td>2351.23</td>
<td>0.32</td>
<td>2105.57</td>
<td>89.5</td>
<td>52.7</td>
</tr>
<tr>
<td>T3</td>
<td>7384</td>
<td>4430.4</td>
<td>2350.55</td>
<td>0.32</td>
<td>2070.85</td>
<td>88.5</td>
<td>53.1</td>
</tr>
<tr>
<td>T2</td>
<td>7293</td>
<td>4375.8</td>
<td>2348.96</td>
<td>0.32</td>
<td>2026.84</td>
<td>86.3</td>
<td>53.7</td>
</tr>
<tr>
<td>T14</td>
<td>7176</td>
<td>4305.6</td>
<td>2346.92</td>
<td>0.33</td>
<td>1958.68</td>
<td>83.5</td>
<td>54.5</td>
</tr>
<tr>
<td>T20</td>
<td>7153</td>
<td>4291.6</td>
<td>2346.58</td>
<td>0.33</td>
<td>1945.02</td>
<td>82.9</td>
<td>54.7</td>
</tr>
<tr>
<td>T4</td>
<td>7130</td>
<td>4278</td>
<td>2346.24</td>
<td>0.33</td>
<td>1931.76</td>
<td>82.3</td>
<td>54.8</td>
</tr>
<tr>
<td>T19</td>
<td>7119</td>
<td>4271.4</td>
<td>2346.01</td>
<td>0.33</td>
<td>1925.39</td>
<td>82.1</td>
<td>54.9</td>
</tr>
<tr>
<td>T6</td>
<td>7043</td>
<td>4225.8</td>
<td>2344.76</td>
<td>0.33</td>
<td>1881.04</td>
<td>80.2</td>
<td>55.5</td>
</tr>
<tr>
<td>T15</td>
<td>6920</td>
<td>4152</td>
<td>2342.61</td>
<td>0.34</td>
<td>1809.39</td>
<td>77.2</td>
<td>56.4</td>
</tr>
<tr>
<td>T17</td>
<td>6909</td>
<td>4145.4</td>
<td>2342.39</td>
<td>0.34</td>
<td>1803.01</td>
<td>77.0</td>
<td>56.5</td>
</tr>
<tr>
<td>T11</td>
<td>6689</td>
<td>4013.4</td>
<td>2338.64</td>
<td>0.35</td>
<td>1674.76</td>
<td>71.6</td>
<td>58.3</td>
</tr>
<tr>
<td>T12</td>
<td>6591</td>
<td>3954.6</td>
<td>2337.05</td>
<td>0.35</td>
<td>1617.55</td>
<td>69.2</td>
<td>59.1</td>
</tr>
<tr>
<td>T1</td>
<td>6244</td>
<td>3746.4</td>
<td>2331.15</td>
<td>0.37</td>
<td>1415.25</td>
<td>60.7</td>
<td>62.2</td>
</tr>
<tr>
<td>T16</td>
<td>5882</td>
<td>3526.2</td>
<td>2324.93</td>
<td>0.39</td>
<td>1186.81</td>
<td>51.0</td>
<td>65.9</td>
</tr>
</tbody>
</table>

NOTA:

- Precio por kilogramo de Arroz Comercial = 0.60
- Relación costo beneficio C/B = \(\frac{\text{Costo total producción} \times 100}{\text{Beneficio Bruto de Producción}} \)
- Rentabilidad Económica % = \(\frac{\text{Beneficio o Ingreso Neto}}{\text{Costo Total de Producción}} \)
VI. DISCUSIÓN:

6.1. DIAS AL 50% DE FLORACIÓN.

En el análisis de varianza para los días al 50% de floración que se presenta en el (Cuadro No. 07), se observa alta diferencia significativa para el Factor A (Variedad), mientras que para el Factor B (Época de cosecha) y la interacción (A x B), no existe significancia estadística.

Por su parte en la prueba de Duncan (Cuadro No. 06), determina, que entre los tratamientos existe diferencia estadística.

Los tratamientos, T16, T17, T18, T19 y T20, (Línea CT 10310 - 30, 35, 40, 45 y 50 días después del 50% de floración) son los más representativos y los que ocupan los cinco primeros lugares en menor tiempo al 50% de floración con valores de 98, desde la siembra.

Independientemente la prueba de Duncan (Cuadro No. 09) realizado para el efecto del Factor A, se encontró diferencia significativa entre las variedades. Demuestra que existe variedades más precoces que otros al 50% de floración pero a la maduración llegan iguales o se retrasan por eso es que hay estas diferencias entre las variedades. Los días al 50% de floración parece ser por factores genéticos de cada variedad pero también reportan KAUFFMAN y otros (1981) indicando que las prácticas climáticas y agronómicas determinan en el adelanto o retraso al 50% de floración.

6.2. FERTILIDAD O ESTERILIDAD DE ESPIGUILLAS.

En el análisis de varianza para la fertilidad o esterilidad de espigullas, que se presenta en el (Cuadro No. 10), se observa que para el Factor A (variedad), para el factor B (época de cosecha) y para la interacción (A x B), existe alta significancia estadística.
Se determina que para la prueba de Duncan (Cuadro No. 11), entre los tratamientos no existe diferencia estadística entre los principales tratamientos que ocuparon los 7 primeros lugares.

Independientemente la prueba de Duncan (Cuadro No. 12), realizado para el Factor A, no se encontró diferencia significativa entre las variedades (Selva Alta y Capirona), ya que tienen un buen porcentaje de fertilidad (> de 89%), a excepción de la Variedad INIA 501 (Bijao) y la línea CT 10310, que tuvieron porcentajes de fertilidad menores a (85%).

Además se puede afirmar en la prueba de Duncan (Cuadro No. 13), que la época de cosecha de 30 días después del 50% de floración, produce una fertilidad de espigüillas de sólo 83% con diferencias muy significativas entre sí. Pero con diferencias significativas a las demás épocas de cosecha con un rango de aceptabilidad de fertilidad de espiguillas entre (74 a 89%).

6.3. RENDIMIENTO DE ARROZ CÁSCARA.

En el análisis de varianza para el rendimiento de arroz cáscara, (Cuadro No. 14), resultó significativo para el Factor A (variedad), para el Factor B (épocas de cosecha) altamente significativo, mientras para la interacción (A x B) no existe significancia estadística.

En la prueba de Duncan (Cuadro No. 15), que entre los tratamientos existe diferencia estadística. Los tratamientos T10 y T8 (Selva Alta - 50 y 40 días después del 50% de floración), son los más representativos y son los que ocupan precisamente los dos primeros lugares para el rendimiento de arroz cáscara con valores de 8.450 y 8.088 kg/ha, respectivamente.
Así mismo los tratamientos T1 (Capirona - 30 días después del 50% de floración) y T16 (Linea CT 10310 - 30 Días después del 50% de floración) obtuvieron menor rendimiento de arroz cáscara con valores de 6 244 y 5 882 kg/ha, respectivamente.

Independientemente la prueba de Duncan (Cuadro No. 16), realizada para el efecto del Factor A, se determinó que la Variedad Selva Alta, superó estadísticamente a las demás variedades por poseer un alto potencial genético de rendimiento.

Independientemente la prueba de Duncan (Cuadro No.17), realizado para el efecto del factor B, se encontró diferencia significativa entre las épocas de cosecha que se iniciaron a los 30 días después del 50% de floración.

De los resultados obtenidos confirman la información KAUFFMAN y otros (1981) indicando que el período prolongado de llenado de grano está asociado con un incremento de rendimiento.

6.4. PORCENTAJE GRANO ENTERO.

En el análisis de varianza para el porcentaje de grano entero que se muestra en el (Cudro No. 18), se observa que no existe significancia estadística para el Factor A (Variedad), mientras que para el factor B (época de cosecha) y para la interacción existe alta significancia estadística.

Para la prueba de Duncan (Cuadro No. 19), se determinó que entre los tratamientos en estudio existe diferencias estadísticas.

Los tratamientos T12 y T11 (INIA 501 Bijao - 35 y 30 días después del 50% de floración), son los más representativos y los que ocupan los dos primeros lugares en mayor porcentaje de grano entero con valores de 60.09 y 60.05% respectivamente.
Así mismo los tratamientos T4 (Capírona - 45 días después del 50% de floración) y T10 (Selva Alta - 50 días después del 50% de floración), obtuvieron menor porcentaje de grano entero con valores de 48.81 y 47.85% respectivamente. Se debe a la variedad porque posee un alto potencial genético en calidad molinera pero también no se descarta a otros factores.

Independientemente la prueba de Duncan (Cuadro No. 20), realizado para el Factor B (Epocas de cosecha), se encontró diferencia significativa entre las épocas de cosechas de 30 a 40 días después del 50% de floración, con relación a las cosechas de 45 y 50 días después del 50% de floración, ajustándose a la información citada por TASCON y GARCÍA (1985) mencionan que en el área cálida peruana encontraron rendimientos máximos a los 30 y 40 días después del 50% de floración.

6.5. PORCENTAJE PILA TOTAL.

En el análisis de varianza para el porcentaje de pila total que se muestra en el (Cuadro No. 21), se observa significancia estadística para el Factor A (variedad), para el Factor B (Epoca de cosecha) existe alta significancia estadística, mientras que para la Interacción (A x B) no existe significancia estadística.

La prueba de Duncan (Cuadro No. 22), determina que entre los tratamientos en estudio existen diferencias estadísticas significativas entre sí.

Los tratamientos T15, T14, T12 y T13 (INIA 501 Bijao) de 50, 45, 35 y 40 días después del 50% de floración), son los que obtuvieron los cuatro primeros lugares en orden de mérito, con valores de 74.00, 73.87, 72.93, 72.87% respectivamente.

Comparativamente con el tratamiento de 30 días después del 50% de floración con el valor de 72.13%.
Así mismo cabe manifestar que los tratamientos T6 (Selva Alta 30 días después del 50% de floración), y T1 (Capirona 30 días después del 50% de floración), obtuvieron menores porcentajes de pila total con valores de 67.67 y 67.53% respectivamente.

Independientemente en la prueba de Duncan (Cuadro No. 23), realizado para el efecto del Factor A, se encontró diferencia significativa entre la variedad (INIA 501 Bijao) con respecto a los demás.

Así mismo en la Prueba de Duncan (Cuadro No. 24), realizado para el Factor B, no difieren estadísticamente entre sí las épocas de cosecha de 40, 45 y 50 días después del 50% de floración. En comparación con las épocas de 30 y 35 días después del 50% de floración que si mostraron diferencias significativas. De los resultados obtenidos se puede complementar con la información citada por SOLORZANO (1993) que considera a la época de cosecha en la disminución o incremento del porcentaje de pila total. Cuando hay una disminución se debe a la cosecha muy temprana, falta de madurez y alta humedad propiciando menor dureza de grano.

6.6. OPACIDAD DEL ENDOSPERMA.

En el análisis de varianza para el grado de opacidad del endosperma que se presenta en el (Cuadro No. 25), se observa alta diferencia significativa para los tres factores, Factor A (Variedad), Factor B (época de cosecha) y la Interacción (A x B).

En la prueba de Duncan (Cuadro No. 26), se determinó que entre los principales tratamientos cuyo grado de opacidad se clasifica como el mejor con niveles de 0.1 a 0.2, no difieren estadísticamente entre sí.
Independientemente la prueba Múltiple de Duncan (Cuadro No. 27), realizada para el factor A, no se encontró diferencia significativa entre las principales variedades (Capirona y Selva Alta), las mismas que poseen un excelente tipo y apariencia de grano pilado comparativamente a los demás tratamientos.

Así mismo en la prueba de Duncan (Cuadro No. 28), realizada para el factor B, no se encontraron diferencias significativas entre las épocas de cosecha, debido a que los rangos de clasificación de opacidad de las variedades en estudio fué bajo (1 a 2). De los resultados obtenidos se puede complementar con la información citada por SOLORZANO (1993) afirma que las formaciones opacas tiene su origen en factores genéticos y también del ambiente y mientras que JENNINGS, COFFMAN y KAUFFMAN (1993) mencionan que el principal factor ambiental que influyen en la opacidad parece ser la temperatura inmediatamente después de la floración, la temperatura alta aumenta la panza blanca.

6.7. DISPERSIÓN ALCALINA

La evaluación registrada para los tratamientos estudiados nos indican:

Que desde los tratamientos T1 al T10 tienen un grado de dispersión de 3-4 y una Temperatura de Gelatinización intermedia/alta; los tratamientos T11 al T15 tienen un grado de dispersión de 5 - 6 y una temperatura de gelatinización intermedia/baja; y desde el tratamiento T16 al T20 tienen un grado de dispersión de 2-3-4 y con una temperatura de gelatinización intermedia/alta, lo cual quiere decir que todos los cultivares están en el rango de aceptabilidad en calidad de grano. Significa que
genéticamente con una temperatura de gelatinización intermedia son arroces sueltos al cocinarse y blandos al enfriarse.

6.8. ANÁLISIS ECONÓMICO.
Todos los tratamientos fueron sometidos bajo el mismo paquete tecnológico y al analizar los costos de cada uno de ellos, se observa que existe una moderada variación (Anexo - Cuadro No. 01), esa variación se da en el transporte de la producción de arroz cáscara.
El tratamiento T10 (Selva Alta 50 días después del 50% floración), es el que reporta el costo de producción más alto con S/. 2368.69 nuevos soles, con respecto al tratamiento T16 (Línea CT 10310 - 30 días después del 50% de floración), que alcanzó el menor costo de producción con S/. 2324.93 Nuevos soles respectivamente.
Del análisis de la rentabilidad y la relación costo - beneficio de cada uno de los tratamientos (Resultados - Cuadro No. 30), se deduce lo siguiente:
. En todos los tratamientos se observa un beneficio neto que varía de S/.2701.31 Nuevos Soles a S/.1186.81 nuevos soles, no existiendo pérdidas o déficit en ninguno de los tratamientos.
. El tratamiento T16 (Línea CT 10310 - 30 días después del 50% de floración), reporta el más alto costo por kilogramo, esto se debe a que se realiza una inversión de S/.0,39 nuevos soles para obtener un kilogramo de arroz cáscara, comparando con el tratamiento T10 (Selva Alta 50 días después del 50% floración) que obtiene el menor costo por kilogramo de S/.0,28 nuevos soles.
El tratamiento T10 (Selva Alta - 50 días después del 50% de floración), que alcanzó el más alto beneficio con 8450 kg/ha reporta el más alto beneficio bruto de S/ 5070.00 nuevos soles, también obtuvo un alto beneficio neto de S/ 2701.31 nuevos soles y con una mayor rentabilidad económica de 11.4% debido a que este tratamiento se obtuvo mayor rendimiento de arroz cáscara kg/ha, obteniéndose mayor utilidad o beneficio económico.

Mientras que el tratamiento T16 (Línea CT 10310 - 30 días después del 50% de floración), que ocupó el último lugar en rendimiento con 5882 kg/ha reporta un beneficio bruto de S/ 3529.20 nuevos soles alcanzando un beneficio neto de S/ 1186.81 nuevos soles y una rentabilidad económica de 51% ocupando el último lugar, debido a un menor rendimiento kg/ha.

Al analizar la relación costo-beneficio se observa que el tratamiento T10 (Selva Alta - 50 días después del 50% de floración), alcanzó la relación con valor de 48.70% seguido del tratamiento T8 (Selva Alta - 40 días después del 50% de floración), con valor de 48.70% y el que reporta el más alto valor en cuanto la relación C/B es el tratamiento T16 (Línea CT 10310 - 30 días después del 50% de floración) con valor de 65.90% respectivamente.
VII. CONCLUSIONES

1.- Las épocas óptimas de cosecha de los cultivos Capirona, Selva Alta, INIA 501, y CT 10310, fueron las que se realizaron desde los 40, 45 y 50 días después del 50% de floración, sin existir diferencias estadísticas significativas entre sí en los potenciales de rendimiento que fluctuaron, entre 7,303 hasta 7,587 t/ha.

2.- El porcentaje de fertilidad de las espiguillas de los cultivos en estudio, cuyas épocas de cosecha se realizaron a los 35, 40, 45 y 50 días después del 50% de floración no presentaron diferencias estadísticas entre sí ya que fueron clasificados como muy fértiles con promedios de 87.09 hasta 88.25% de fertilidad de las espiguillas.

3.- El cultivar que alcanzó el menor tiempo al 50% de floración correspondió a la línea CT 10310 con 98 días desde la siembra y la variedad que obtuvo un mayor tiempo al 50% de floración fue INIA 501 con 108 días desde la siembra.

4.- El Rendimiento Molinero de grano entero de la variedad INIA 501, fue mayor de 60% cuando fue cosechada entre 30 a 35 días después del 50% de floración, luego la línea CT 10310 obtuvo más del 53% cuando fue cosechada a los 40 días después del 50% de floración, seguida de la Variedad Capirona con más del 52% cuando su cosecha se realizó a los 35 y 40 días después del 50% de floración y finalmente la Variedad Selva Alta que obtuvo más del 51% al realizar su cosecha a los 35 días después del 50% de floración.
5.- Las épocas de cosecha estudiadas en el presente ensayo no influyen en la característica de dispersión alcalina la misma que se clasifica en:

<table>
<thead>
<tr>
<th>CAPIRONA</th>
<th>INTERMEDIA/ALTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELVA ALTA</td>
<td>INTERMEDIA/ALTA</td>
</tr>
<tr>
<td>INIA 501</td>
<td>INTERMEDIA/BAJA</td>
</tr>
<tr>
<td>CT 10310</td>
<td>INTERMEDIA/ALTA</td>
</tr>
</tbody>
</table>

6.- Al analizar la relación Costo-Beneficio de cada uno de los tratamientos, se observa que el tratamiento T10 (Selva Alta -50 días después del 50% de Floración) alcanzó la relación con valor de 46.70% seguido del tratamiento T8 (Selva Alta-40 días después del 50% de floración), con valor de 49.70% y el que reporta el más alto valor en cuanto la relación C/B es el tratamiento T16 (Línea CT 10310-30 días después del 50% de floración) con valor de 65.90% respectivamente.
VIII. RECOMENDACIONES

1.- Continuar el presente trabajo de Tesis en otras Campanías y en diferentes localidades de la Región San Martín para medir el efecto de la Interacción Genotipo-Medio Ambiente en la calidad Molinera.

2.- Fomentar la época de cosecha de 35 a 45 días después del 50% de floración de los cultivos en estudio para obtener mejores rendimientos en cáscara y mejor calidad molinera en el Valle del Bajo Mayo.

3.- Realizar trabajos de investigación con dosis de fertilización NPK en relación a épocas de cosecha para cada línea o variedad en estudio y en diferentes localidades de la Selva Alta Irrigada.
IX: RESUMEN

Con el objeto de determinar el momento óptimo de cosecha de cuatro variedades de arroz en cinco épocas de cosecha y su efecto sobre la Calidad Molinera y Comestible del grano se realizó un experimento en la Estación Experimental “El Porvenir” ubicado en el Km 14,5 de la Carretera Marginal Sur Tarapoto - Juanjui, en un suelo arcilloso bajo riego al trasplante entre Febrero y Julio del 2000.

Se utilizó el diseño de parcelas divididas en bloques completamente randomizados con tres repeticiones; las variedades, Capirona, Selva Alta, Inia 501 Bijao y Línea CT 10310 fueron considerados como las parcelas principales y las épocas de cosecha como subparcelas.

La variedad Inia 501 Bijao obtuvo el mayor porcentaje de grano entero, encima del 60% cuando fue cosechada entre 30 a 35 después del 50% de floración y la variedad Selva Alta con el menor porcentaje, encima del 51% al realizar la cosecha a los 35 días después del 50% de floración.

No se encontraron diferencias estadísticas significativas entre los rendimientos de las variedades evaluadas (7,303, 7,531 y 7,587 t/ha), cuando se cosecharon a los 40, 45, y 50 días después del 50% de floración.

Las pruebas de calidad comestible demostraron que la variedad es el factor determinante de la temperatura de gelatinización y que entre las épocas de cosecha no se encontraron diferencias estadísticas significativas entre sí. Las variedades (Capirona, Selva Alta y la Línea CT 10310) presentan temperatura de gelatinización Intermedia/Alta y la variedad Inia 501 Bijao presentó temperatura de gelatinización Intermedia/Baja.

El tratamiento Selva Alta - 50 días después del 50% de Floración alcanzó la relación Costo-Beneficio más bajo con 46,70% y el tratamiento Línea CT10310-30 días después del 50% de floración reportó el más alto valor con 65,90%.
SUMMARY

In order to determining the good moment of crop of four varieties of rice in five crop times and their effect on the Calidad Molinera and Eatable of the grain he/she was carried out an experiment in the Experimental Station The Future located in the Km 14,5 of the South Marginal Highway Tarapoto - Juanjui, in a loamy floor under watering to the transplant between February and Julio the 2000.

The design of parcels was used divided completely in blocks randomizados with three repetitions; the varieties, Capirona, High Forest, Inia 501 Bijao and Line CT 10310 was considered as the main parcels and the crop times as subparcelas.

The variety Inia 501 Bijao obtained the biggest grain percentage entirely, above 60% when it was harvested among 30 or 35 after 50 floración% and the variety High Forest with the smallest percentage, above 51% when carrying out the crop to the 35 days después of 50 floración%.

They were not significant statistical differences among the yields of the evaluated varieties (7,303, 7,531 and 7,587 t/ha), when they were harvested to the 40, 45, and 50 days after 50 floración%.

The tests of eatable quality demonstrated that the variety is the decisive factor of the gelatinización temperature and that among the crop times they were not significant statistical differences to each other. The varieties (Capirona, High Forest and the Line CT 10310) they present gelatinización temperature Intermedia/Alta and the variety Inia 501 Bijao it presented gelatinización temperature Intermedia/Baja.

The treatment High Forest - 50 days after 50% of Floración it reached the relationship lower Cost-benefit with 46,70% and the treatment Line CT10310-30 days after 50 floración% it reported the highest value with 65,90%.
IX. **BIBLIOGRAFÍA**

1. ALVA, A. C. 2000 “Manejo Integrado del Cultivo de Arroz”. CODESE. Lambayeque-Perú. 7 pág.
6. ECASA. 1985 "Boletín Informativo de la Empresa Comercializadora" Lima - Perú.

ANEXOS
CUADRO No. 01: COSTOS DE PRODUCCIÓN POR TRATAMIENTO DEL CULTIVO DEL ARROZ (Oryza sativa L.)

<table>
<thead>
<tr>
<th>ACTIVIDADES</th>
<th>UNIDAD MEDIDA</th>
<th>CANTIDAD</th>
<th>P.V.</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
<th>T8</th>
<th>T9</th>
<th>T10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. COSTOS DIRECTOS</td>
<td></td>
</tr>
<tr>
<td>A. MANO DE OBRA</td>
<td></td>
</tr>
<tr>
<td>1. Maquinaria</td>
<td>H/Maeq</td>
<td>3</td>
<td>50.00</td>
<td>150.00</td>
</tr>
<tr>
<td>2. Abonamiento</td>
<td>Jornal</td>
<td>1</td>
<td>10.00</td>
</tr>
<tr>
<td>3. Estaciones Finalistas</td>
<td>Jornal</td>
<td>6</td>
<td>10.00</td>
</tr>
<tr>
<td>4. Cosecha</td>
<td>J/Saco</td>
<td>60</td>
<td>4.00</td>
<td>240.00</td>
</tr>
<tr>
<td>B. INSUMOS</td>
<td></td>
</tr>
<tr>
<td>1. Semillas</td>
<td>Kilos</td>
<td>60</td>
<td>2.80</td>
<td>120.00</td>
</tr>
<tr>
<td>2. Control malezas</td>
<td>Litros</td>
<td>3</td>
<td>35.00</td>
<td>105.00</td>
</tr>
<tr>
<td>3. Enfriadores</td>
<td>Sacos</td>
<td>3.6</td>
<td>35.00</td>
<td>231.00</td>
</tr>
<tr>
<td>4. Otros</td>
<td></td>
</tr>
<tr>
<td>5. Sacos negros polietileno</td>
<td>Unidades</td>
<td>100</td>
<td>1.00</td>
<td>100.00</td>
</tr>
<tr>
<td>6. Urea</td>
<td>Sacsos</td>
<td>30</td>
<td>0.30</td>
<td>90.00</td>
</tr>
</tbody>
</table>

CUADRO No. 01: COSTOS DE PRODUCCIÓN POR TRATAMIENTO DEL CULTIVO DEL ARROZ (Oryza sativa L.).
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANSPORTE DE LA COSECHA</td>
<td>T.M.</td>
<td>15.00</td>
<td>6244</td>
<td>93.7</td>
<td>7203</td>
<td>109.4</td>
<td>7304</td>
<td>110.8</td>
<td>7130</td>
<td>107.8</td>
<td>7589</td>
<td>114.0</td>
<td>7043</td>
</tr>
<tr>
<td>SUB TOTAL COSTO DIRECTO</td>
<td></td>
<td></td>
<td></td>
<td>2055.7</td>
<td>2071.4</td>
<td>2072.8</td>
<td>2069</td>
<td>2067.7</td>
<td>2080.8</td>
<td>2093.3</td>
<td>2078.6</td>
<td>2068.6</td>
<td></td>
</tr>
<tr>
<td>IMPREVISTOS 6% SUB TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>129.7</td>
<td>124.3</td>
<td>124.7</td>
<td>124.1</td>
<td>124.6</td>
<td>125.1</td>
<td>125.5</td>
<td>125.1</td>
<td>125.1</td>
<td></td>
</tr>
<tr>
<td>COSTO TOTAL DIRECTO (C.D.)</td>
<td></td>
<td></td>
<td></td>
<td>2185.4</td>
<td>2205.7</td>
<td>2207.5</td>
<td>2193.8</td>
<td>2195.3</td>
<td>2205.9</td>
<td>2218.8</td>
<td>2213.7</td>
<td>2213.7</td>
<td></td>
</tr>
<tr>
<td>B. COSTOS INDIRECTOS</td>
<td></td>
<td></td>
<td></td>
<td>172.8</td>
<td>173.97</td>
<td>174.11</td>
<td>173.78</td>
<td>173.38</td>
<td>173.76</td>
<td>174.76</td>
<td>174.99</td>
<td>174.61</td>
<td>175.45</td>
</tr>
<tr>
<td>Gastos Administrativos 6%(C.D.)</td>
<td></td>
<td></td>
<td></td>
<td>172.8</td>
<td>173.97</td>
<td>174.11</td>
<td>173.78</td>
<td>173.38</td>
<td>173.76</td>
<td>174.76</td>
<td>174.99</td>
<td>174.61</td>
<td>175.45</td>
</tr>
<tr>
<td>C. COSTO TOTAL DE PRODUCCIÓN</td>
<td></td>
<td></td>
<td></td>
<td>2331.5</td>
<td>2346.96</td>
<td>2350.55</td>
<td>2340.24</td>
<td>2354.18</td>
<td>2344.76</td>
<td>2359.62</td>
<td>2362.45</td>
<td>2357.35</td>
<td>2368.89</td>
</tr>
<tr>
<td>D. ANALISIS ECONOMICO</td>
<td></td>
<td></td>
<td></td>
<td>8244</td>
<td>7293</td>
<td>7324</td>
<td>7150</td>
<td>7598</td>
<td>7043</td>
<td>7917</td>
<td>8088</td>
<td>7787</td>
<td>8450</td>
</tr>
<tr>
<td>RENDIMIENTO (kg/ha)</td>
<td></td>
<td></td>
<td></td>
<td>0.80</td>
</tr>
<tr>
<td>PRECIO POR KILOGRAMO</td>
<td></td>
<td></td>
<td></td>
<td>3749.4</td>
<td>4376.8</td>
<td>4430.4</td>
<td>4276</td>
<td>4559.4</td>
<td>4059.4</td>
<td>4750.2</td>
<td>4671</td>
<td>4671</td>
<td>5073</td>
</tr>
<tr>
<td>VALOR BRUTO DE PRODUCCIÓN</td>
<td></td>
<td></td>
<td></td>
<td>1415.26</td>
<td>2026.84</td>
<td>2079.85</td>
<td>1931.76</td>
<td>2205.22</td>
<td>2205.22</td>
<td>2360.58</td>
<td>2313.65</td>
<td>2313.65</td>
<td>2701.31</td>
</tr>
<tr>
<td>VALOR NETO DE PRODUCCIÓN</td>
<td></td>
<td></td>
<td></td>
<td>1415.26</td>
<td>2026.84</td>
<td>2079.85</td>
<td>1931.76</td>
<td>2205.22</td>
<td>2205.22</td>
<td>2360.58</td>
<td>2313.65</td>
<td>2313.65</td>
<td>2701.31</td>
</tr>
<tr>
<td>ACTIVIDADES</td>
<td>UNIDAD</td>
<td>MEDIDA</td>
<td>CANTIDAD</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>LÓGICOS DE CULTIVO</td>
<td></td>
</tr>
<tr>
<td>1. Maquinaria</td>
<td></td>
</tr>
<tr>
<td>2. Arriendo, y Renta</td>
<td></td>
</tr>
<tr>
<td>3. Propagación</td>
<td></td>
</tr>
<tr>
<td>4. Semilla</td>
<td></td>
</tr>
<tr>
<td>5. Trabajo</td>
<td></td>
</tr>
<tr>
<td>6. Att</td>
<td></td>
</tr>
<tr>
<td>yling</td>
<td></td>
</tr>
<tr>
<td>7. Aplicación de fertilizantes</td>
<td></td>
</tr>
<tr>
<td>8. Transporte</td>
<td></td>
</tr>
<tr>
<td>B. INSS</td>
<td></td>
</tr>
<tr>
<td>1. Salud</td>
<td></td>
</tr>
<tr>
<td>2. Seguro</td>
<td></td>
</tr>
<tr>
<td>3. FINUC</td>
<td></td>
</tr>
<tr>
<td>4. Otros</td>
<td></td>
</tr>
<tr>
<td>C. TRANSPORTE</td>
<td></td>
</tr>
<tr>
<td>1. Salud</td>
<td></td>
</tr>
<tr>
<td>2. Seguro</td>
<td></td>
</tr>
<tr>
<td>3. FINUC</td>
<td></td>
</tr>
<tr>
<td>4. Otros</td>
<td></td>
</tr>
<tr>
<td>ACTIVIDADES</td>
<td>UNID. MED.</td>
<td>T11</td>
<td>T12</td>
<td>T13</td>
<td>T14</td>
<td>T15</td>
<td>T16</td>
<td>T17</td>
<td>T18</td>
<td>T19</td>
<td>T20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRANSPORTE DE LA COSECHA</td>
<td>TM</td>
<td>15.00</td>
<td>6569</td>
<td>100.3</td>
<td>659</td>
<td>98.9</td>
<td>7428</td>
<td>111.4</td>
<td>7176</td>
<td>107.6</td>
<td>6520</td>
<td>103.8</td>
<td>5862</td>
</tr>
<tr>
<td>SUB TOTAL COSTO DIRECTO</td>
<td></td>
</tr>
<tr>
<td>IMPREVISTOS 5% SUB TOTAL</td>
<td></td>
</tr>
<tr>
<td>COSTO TOTAL DIRECTO (C.D.)</td>
<td></td>
</tr>
<tr>
<td>B. COSTOS INDIRECTOS</td>
<td></td>
</tr>
<tr>
<td>Gastos Administrativos 0%(C.D.)</td>
<td></td>
</tr>
<tr>
<td>C. COSTO TOTAL DE PRODUCCIÓN</td>
<td></td>
</tr>
<tr>
<td>D. ANÁLISIS ECONÓMICO</td>
<td></td>
</tr>
<tr>
<td>RENDIMIENTO (Kg/ha)</td>
<td>9858</td>
<td>6591</td>
<td>7429</td>
<td>7170</td>
<td>7420</td>
<td>6262</td>
<td>6909</td>
<td>7447</td>
<td>7119</td>
<td>7153</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRECIO POR KILOGRAMO</td>
<td>0.50</td>
<td>0.50</td>
<td>0.60</td>
<td>0.60</td>
<td>0.50</td>
<td>0.50</td>
<td>0.60</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>VALOR BRUTO DE PRODUCCIÓN</td>
<td>4013.4</td>
<td>3964</td>
<td>4468</td>
<td>4306</td>
<td>4152</td>
<td>3529</td>
<td>4146</td>
<td>4466</td>
<td>4271</td>
<td>4281</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VALOR NETO DE PRODUCCIÓN</td>
<td>1674.38</td>
<td>1617.55</td>
<td>2105.67</td>
<td>1858.69</td>
<td>1803.90</td>
<td>1188.81</td>
<td>1803.90</td>
<td>2116.83</td>
<td>1925.39</td>
<td>1945.92</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CUADRO No. 02: PROMEDIO EN RENDIMIENTO DE ARROZ CÁSCARA Y SUS COMPONENTES.

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>RENDIMIENTO DE GRANO t/ha</th>
<th>NUMERO DE GRANOS LLENO/PANOJA</th>
<th>PESO DE 1000 GRANOS (g)</th>
<th>NUMERO DE PANOJAS/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>7.264</td>
<td>170.7</td>
<td>26.80</td>
<td>244.6</td>
</tr>
<tr>
<td>T2</td>
<td>7.293</td>
<td>187.8</td>
<td>26.84</td>
<td>224.2</td>
</tr>
<tr>
<td>T3</td>
<td>7.384</td>
<td>187.2</td>
<td>27.07</td>
<td>197.7</td>
</tr>
<tr>
<td>T4</td>
<td>7.130</td>
<td>184.4</td>
<td>27.01</td>
<td>219.4</td>
</tr>
<tr>
<td>T5</td>
<td>7.599</td>
<td>171.7</td>
<td>26.89</td>
<td>205.7</td>
</tr>
<tr>
<td>T6</td>
<td>7.043</td>
<td>184.8</td>
<td>26.60</td>
<td>208.4</td>
</tr>
<tr>
<td>T7</td>
<td>7.917</td>
<td>199.2</td>
<td>26.94</td>
<td>220.1</td>
</tr>
<tr>
<td>T8</td>
<td>8.088</td>
<td>200.9</td>
<td>26.92</td>
<td>216.3</td>
</tr>
<tr>
<td>T9</td>
<td>7.785</td>
<td>201.1</td>
<td>26.75</td>
<td>199.0</td>
</tr>
<tr>
<td>T10</td>
<td>8.450</td>
<td>205.7</td>
<td>27.41</td>
<td>226.0</td>
</tr>
<tr>
<td>T11</td>
<td>6.689</td>
<td>134.2</td>
<td>31.51</td>
<td>263.0</td>
</tr>
<tr>
<td>T12</td>
<td>6.591</td>
<td>129.7</td>
<td>31.59</td>
<td>214.0</td>
</tr>
<tr>
<td>T13</td>
<td>7.428</td>
<td>134.4</td>
<td>31.64</td>
<td>248.1</td>
</tr>
<tr>
<td>T14</td>
<td>7.176</td>
<td>129.2</td>
<td>31.46</td>
<td>238.0</td>
</tr>
<tr>
<td>T15</td>
<td>6.920</td>
<td>123.0</td>
<td>31.59</td>
<td>232.0</td>
</tr>
<tr>
<td>T16</td>
<td>5.882</td>
<td>144.2</td>
<td>22.16</td>
<td>274.7</td>
</tr>
<tr>
<td>T17</td>
<td>6.909</td>
<td>159.2</td>
<td>22.32</td>
<td>264.3</td>
</tr>
<tr>
<td>T18</td>
<td>7.447</td>
<td>165.1</td>
<td>22.13</td>
<td>267.4</td>
</tr>
<tr>
<td>T19</td>
<td>7.119</td>
<td>162.7</td>
<td>22.36</td>
<td>251.0</td>
</tr>
<tr>
<td>T20</td>
<td>7.153</td>
<td>144.9</td>
<td>22.47</td>
<td>235.7</td>
</tr>
</tbody>
</table>
CUADRO No. 03: PROMEDIO DE OTRAS OBSERVACIONES DE LOS TRATAMIENTOS ESTUDIADOS

<table>
<thead>
<tr>
<th>TRATAMIENTOS</th>
<th>HUMEDAD DE COSECHA</th>
<th>GRANO DESCASCARADO</th>
<th>RENDIMIENTO MOLINERO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LARGO</td>
<td>ANCHO</td>
<td>R-L/A</td>
</tr>
<tr>
<td>1</td>
<td>24.93</td>
<td>7.353</td>
<td>2.133</td>
</tr>
<tr>
<td>2</td>
<td>23.63</td>
<td>7.533</td>
<td>2.157</td>
</tr>
<tr>
<td>3</td>
<td>22.33</td>
<td>7.443</td>
<td>2.130</td>
</tr>
<tr>
<td>4</td>
<td>19.40</td>
<td>7.507</td>
<td>2.103</td>
</tr>
<tr>
<td>5</td>
<td>16.80</td>
<td>7.593</td>
<td>2.147</td>
</tr>
<tr>
<td>6</td>
<td>24.80</td>
<td>7.403</td>
<td>2.200</td>
</tr>
<tr>
<td>7</td>
<td>23.60</td>
<td>7.343</td>
<td>2.227</td>
</tr>
<tr>
<td>8</td>
<td>22.43</td>
<td>7.330</td>
<td>2.153</td>
</tr>
<tr>
<td>9</td>
<td>20.80</td>
<td>7.473</td>
<td>2.143</td>
</tr>
<tr>
<td>10</td>
<td>19.40</td>
<td>7.323</td>
<td>2.153</td>
</tr>
<tr>
<td>11</td>
<td>23.27</td>
<td>7.843</td>
<td>2.213</td>
</tr>
<tr>
<td>12</td>
<td>22.93</td>
<td>7.743</td>
<td>2.227</td>
</tr>
<tr>
<td>13</td>
<td>20.20</td>
<td>7.790</td>
<td>2.187</td>
</tr>
<tr>
<td>14</td>
<td>17.90</td>
<td>7.620</td>
<td>2.210</td>
</tr>
<tr>
<td>15</td>
<td>14.70</td>
<td>7.697</td>
<td>2.193</td>
</tr>
<tr>
<td>16</td>
<td>26.10</td>
<td>7.180</td>
<td>1.910</td>
</tr>
<tr>
<td>17</td>
<td>24.77</td>
<td>7.040</td>
<td>1.890</td>
</tr>
<tr>
<td>18</td>
<td>23.53</td>
<td>7.197</td>
<td>1.867</td>
</tr>
<tr>
<td>19</td>
<td>20.63</td>
<td>7.113</td>
<td>1.900</td>
</tr>
<tr>
<td>20</td>
<td>18.20</td>
<td>7.030</td>
<td>1.880</td>
</tr>
</tbody>
</table>
CUADRO No. 04: EVALUACIONES REGISTRADAS EN PROMEDIO DE DIAS AL 50% FLORACIÓN
(PERIODO VEGETATIVO) POR TRATAMIENTO

<table>
<thead>
<tr>
<th>REPETICIÓN</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
<th>T8</th>
<th>T9</th>
<th>T10</th>
<th>T11</th>
<th>T12</th>
<th>T13</th>
<th>T14</th>
<th>T15</th>
<th>T16</th>
<th>T17</th>
<th>T18</th>
<th>T19</th>
<th>T20</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>104</td>
<td>104</td>
<td>104</td>
<td>104</td>
<td>105</td>
<td>103</td>
<td>103</td>
<td>102</td>
<td>103</td>
<td>106</td>
<td>108</td>
<td>108</td>
<td>107</td>
<td>108</td>
<td>99</td>
<td>98</td>
<td>97</td>
<td>97</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>106</td>
<td>105</td>
<td>106</td>
<td>105</td>
<td>104</td>
<td>103</td>
<td>102</td>
<td>103</td>
<td>107</td>
<td>108</td>
<td>107</td>
<td>106</td>
<td>108</td>
<td>99</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>97</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>103</td>
<td>103</td>
<td>103</td>
<td>108</td>
<td>108</td>
<td>108</td>
<td>108</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td></td>
</tr>
</tbody>
</table>

CUADRO No. 05: EVALUACIONES REGISTRADAS EN PROMEDIO DE DIAS A LA COSECHA
(PERIODO VEGETATIVO) POR TRATAMIENTO

<table>
<thead>
<tr>
<th>REPETICIÓN</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
<th>T8</th>
<th>T9</th>
<th>T10</th>
<th>T11</th>
<th>T12</th>
<th>T13</th>
<th>T14</th>
<th>T15</th>
<th>T16</th>
<th>T17</th>
<th>T18</th>
<th>T19</th>
<th>T20</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>134</td>
<td>139</td>
<td>144</td>
<td>149</td>
<td>155</td>
<td>138</td>
<td>143</td>
<td>147</td>
<td>153</td>
<td>138</td>
<td>143</td>
<td>148</td>
<td>152</td>
<td>158</td>
<td>126</td>
<td>132</td>
<td>136</td>
<td>141</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>136</td>
<td>140</td>
<td>146</td>
<td>150</td>
<td>154</td>
<td>139</td>
<td>143</td>
<td>149</td>
<td>153</td>
<td>137</td>
<td>143</td>
<td>147</td>
<td>154</td>
<td>156</td>
<td>127</td>
<td>132</td>
<td>137</td>
<td>143</td>
<td>146</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>135</td>
<td>141</td>
<td>145</td>
<td>151</td>
<td>156</td>
<td>133</td>
<td>143</td>
<td>148</td>
<td>153</td>
<td>138</td>
<td>143</td>
<td>149</td>
<td>153</td>
<td>156</td>
<td>128</td>
<td>132</td>
<td>139</td>
<td>142</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>135</td>
<td>140</td>
<td>145</td>
<td>150</td>
<td>155</td>
<td>133</td>
<td>143</td>
<td>148</td>
<td>153</td>
<td>138</td>
<td>143</td>
<td>148</td>
<td>153</td>
<td>156</td>
<td>127</td>
<td>132</td>
<td>137</td>
<td>142</td>
<td>147</td>
<td></td>
</tr>
</tbody>
</table>

VARIEDADES:
- Capriona (T1 al T5)
- Seleva Alta (T6 al T10)
- INIA 501 Bajo (T11 al T15)
- Línea CT 10310 (T16 al T20)

EPOCAS DE COSECHAS:
- 30 días después de la floración (T1, T6, T11 y T16)
- 35 días después de la floración (T2, T7, T12 y T17)
- 40 días después de la floración (T3, T8, T13 y T18)
- 45 días después de la floración (T4, T9, T14 y T19)
- 50 días después de la floración (T5, T10, T15 y T20)
CROQUIS DE LA SUB PARCELA

5 m

4 m

2.5 m

1.5 m

0.25 m

0.25 m