

Esta obra está bajo una <u>Licencia</u>

<u>Creative Commons Atribución-</u>

<u>NoComercial-CompartirIgual 2.5 Perú.</u>

Vea una copia de esta licencia en

http://creativecommons.org/licenses/by-nc-sa/2.5/pe/

Universidad Nacional de San Martín Facultad de Ciencias Agrarias

DETERMINACIÓN DE CONSTANTES FÍSICAS Y FACTORES DE CONVERSIÓN DE CAFÉ CEREZO Coffea arabica L. EN EL VALLE DEL ALTO MAYO PROVINCIAS MOYOBAMBA Y RIOJA"

TESIS

PARA OPTAR EL TÍTULO PROFESIONAL DE !

INGENIERO AGRONOMO

PRESENTADO POR EL BACHILLER !

MICHAEL CAINE MOZOMBITE CORDOVA

Tarapoto — Perú 2000

UNIVERSIDAD NACIONAL DE SAN MARTIN

FACULTAD DE CIENCIAS AGRARIAS

DEPARTAMENTO ACADEMICO AGROSILVO PASTORIL

ÁREA: DE SUELOS Y CULTIVOS

TAFÉ CEREZO Coffea arabica L. EN EL VALLE DEL ALTO MAYO - PROVINCIAS MOYOBAMBA Y RIOJA"

TESIS

Para Optar al Título de:

INGENIERO AGRONOMO

PRESENTADO POR:

BACH, MICHAEL CAINE MOZOMBITE CORDOVA

tilio G. Choy Toyco

PRESIDENTE

Sc. César Chappa Santa María

MIEMBRO

Ingo. Luís Leveau Guerra

MIEMBRO

Ingo. Msc. Orlando Ríos Ramírez

ASESOR

TARAPOTO - PERU

DICIEMBRE - 2000

DEDICATORIA

Maris padres:

y Raquel por su

Example esfuerzo para

Baller culminar con éxito

Mi fermación profesional

Al campesinado Pernano

para que el presente tra -
bajo ayude a solucio
nar los problemas del hom
bre que trabaja la tierra.

hermanos:

Margoth y James,

Pari como a mis tíos Pablo,

Collins y Armstrongs

SE apoyo y colaboracióπ

mi formación profesional.

AGRADECIMIENTO

- Al convenio ADEX-DA Programa Café Alto Mayo, por haber prestado el apoyo necesario
 para la ejecución del presente trabajo.
- A TECHNOSERVE, INC DAP LAMAS por su colaboración con el apoyo logístico en trabajos de gabinete para la culminación del presente trabajo.
- Al lng. Orlando Ríos Ramirez, patrocinador del presente trabajo de investigación.
- Al Ing. Elmer Juarez Nima, Co-Asesor del presente trabajo de investigación, por su valiosa colaboración.
- Al Ing. Carlos Palacios Espinoza, Co-Asesor del presente trabajo de investigación por su valiosa colaboración.
- Al equipo técnico del convenio ADEX DA Moyobamba, por el apoyo desinteresado durante la ejecución del trabajo de investigación.
- Al Ing. Anderson Piñan Rodriguez, por su apoyo en los análisis estadístico.
- A los Agricultores cafetaleros que de una u otra forma apoyaron para que el presente trabajo sea todo un éxito.

INDICE

	PAG.
INTRODUCCION	1
OBJETIVOS	3
REVISION BIBLIOGRAFICA	4
MATERIALES Y METODOS	18
RESULTADOS	30
DISCUSIONES	58
CONCLUSIONES	70
RECOMENDACIONES	73
RESUMEN	74
BIBLIOGRAFIA	76
ANEXO	

L- INTRODUCCIÓN

El café es uno de los cultivos más importantes de la Región San Martín, siendo el Alto Mayo la zona donde se encuentra el mayor porcentaje de áreas en producción. El café en todos sus años de existencia, ha mantenido un papel preponderante y equilibrado en el desarrollo socioeconómico del País; la actividad cafetalera es fuente de empleo permanente en labores de mantenimiento, cosecha y beneficio. ADEX-DA,(1 999)

Actualmente en nuestro país la producción de café se viene incrementando considerablemente, la cual va provocando un excedente en el mercado mundial. Ello obliga ai estado y a los productores a mejorar la calidad del producto mediante la utilización de nuevas variedades, aplicación de nuevas técnicas en cosecha y beneficio, manejo y conservación del suelo, fertilización adecuada y oportuno control de plagas y enfermedades.

En la Región San Martin y particularmente en la zona del Alto Mayo el interés en el cultivo del cafeto es bastante significativo, los cafetales están ubicadas en las partes altas de las provincias de Moyobamba y Rioja, constituyendo una de las principales actividades generadoras de empleo y divisas para la Región y el País. ADEX – DA, (1998).

En el Perú carecemos de investigaciones realizadas sobre las constantes físicas y factores de conversión, ya que siempre dependemos de las investigaciones realizadas en Colombia. Al conocer éstos parámetros sabremos con cierta aproximación las relaciones existentes entre el peso y el volumen; contenido de humedad y otros

aspectos del café cerezo hasta el café pergamino. También facilitarán las operaciones comerciales, cálculos de beneficiadores, así como sus dimensiones de los diferentes dispositivos y máquinas empleadas en el proceso de beneficio transformación o cambio entre cantidades de un estado a otro del grano del café. URIBE,(1 977).

Bajo estas consideraciones para el presente trabajo se plantea las siguientes hipótesis:

- Hipótesis Nula: Se plantea teniendo en cuenta que en la zona del Alto Mayo no se tiene valores de las constantes físicas y factores de conversión para las variedades: Typica, Caturra y Catimor a diferentes altitudes sobre el nivel del mar: Baja, Media y Alta.
- Hipótesis Alterna: Se plantea encontrar valores de las constantes físicas y factores de conversión para las variedades: Typica, Caturra y Catimor a diferentes altitudes sobre el nivel del mar: Baja, Media y Alta.

B. OBJETIVOS

- 2.1. Determinar las constantes fisicas y factores de conversión del fruto del café en tres variedades: Typica, Caturra, y Catimor a diferentes altitudes sobre el nivel del mar : Baja, Media y Alta, para el valle del Alto Mayo.
- 2.2. Facilitar los cálculos para diversas determinaciones en operaciones comerciales y aspectos técnicos referente al fruto del café Coffea arabica L.

E- REVISION BIBLIOGRAFICA

3.1.- BOTANICA DEL CAFÉ

3.1.1- TAXONOMIA: Según Zamora, (1998)

-	Reino	: Vegetal
-	División	: Magnoliophyta
-	Tipo	: Espermatofitas
-	Sub tipo	: Angiopermas
-	Clase	: Dicotyledoneae
-	Sub clase	: Asteridae.
-	Orden	: Rubiales
-	Familia	: Rubiaceae
-	Género	: Coffea
-	Sub género	: Eucoffea
-	Especies	: Arabica
		Canephora
		Liberia

3.2- MORFOLOGIA DEL CAFÉ: Según Zamora,(1 998)

La planta del café tiene un solo eje, en cuyo extremo hay una zona de crecimiento activo permanente, que va alargando el tallo, formando nudos y entre nudos. El eje central o ramas ortotrópicas sólo producen yemas vegetativas mientras que las ramas laterales o plagiotrópicas, llamadas bandolas, son las ramas primarias que dan origen a ramas secundarias y de aquí a su vez pueden salir las terciarias.

- SISTEMA RADICULAR: Esta compuesto por un eje central cónico o raíz pivotante, que alcanza hasta 60 cm. De ella salen dos tipos de raíces, unas profundas de sostén y otras que se extienden lateralmente el 80 % de ellas se concentra en los primeros 30 cm del suelo.
- HOJAS: Aparece en las ramas laterales (plagiotrópicas), en un mismo plano y en posición opuesta.
- FLORES: En las axilas de las hojas aparecen de 1 a 3 ejes que se dividen varias ramificaciones cortas que terminan cada una en una flor. El total de flores por axilas es de dos a doce. Las flores se abren en las primeras horas de la mañana, permaneciendo así durante el día. Al segundo día inicia el marchitamiento y al tercero se desprenden la corola y los estambres, la polinización cruzada en Coffea arabica no supera el 6%.
- FRUTOS: Está constituido por varias partes como epicarpio o epidermis, mesocarpio o pulpa, endocarpio o pergamino y endosperma o semilla.
 - El mesocarpio está formado por varios estratos de células grandes lignificadas y poliédricas.
 - El endocarpio está formado por cinco o seis capas esclereidas de paredes gruesas y constituyen la capa protectora del endosperma.

SEMILLA: Está constituido en su mayor parte por el endosperma, el cual es coriáceo, verdoso o amarillento. Las células del endosperma contienen almidón, aceites, azúcares, alcaloides como cafeina y otras sustancias.

3.3 ECOLOGIA DEL CAFE

Para el desarrollo de una zona cafetalera se tiene en cuenta factores como: clima, suelo, económicos, humanos y otros criterios de orientación. El ambiente físico (clima y suelo), es base del crecimiento de la planta, a partir del cual funcionan los demás elementos. Zamora, (1 998)

CLIMA: Los climas tropicales y sub tropicales con temperaturas entre 20 °C y 25 °C, con lluvias entre los 1 500 a 2 500 mm/año y con una altitud comprendida entre los 1 000 a 1 500 m.s.n.m. son las más apropiadas para la producción del café. Sin embargo, se puede cultivar en niveles variables de precipitación entre los 1 000 a 4 000 mm/año y con altitudes desde el nivel del mar hasta los 2 000 m.s.n.m, siempre que las temperaturas sean apropiadas. Sulca, (1 996)

Las lluvias determinan el inicio de una campaña cafetalera, favorece el crecimiento de la planta, la floración y la fructificación.

La luminosidad es otro de los factores que se debe tener en cuenta, el café necesita aproximadamente 150 horas sol / mes cuando existe mucha luminosidad los cafetos tiene un mayor desarrollo y se desgastan más rápido. A mayor luz, mayor necesidad de agua y sustancias minerales; la luminosidad está relacionado con dos factores: el uso de fertilizantes y la distribución de lluvias.

La temperatura es la que determina la calidad del café, cuando la temperatura está por debajo de los 16 ° C el cafeto sufre una retención de las yemas florales propician un lento desarrollo y el fruto madura más lentamente y cuando la temperatura es menos de 6 ° C el cafeto sufre daños por el frío, por el contrario la alta temperatura acelera la seniscencia de los frutos, causan anomalías de la flor y fructificación limitada, la fotosíntesis se vuelve nula, además propician la ocurrencia de plagas y enfermedades, entre otros factores. Castañeda, (1 997)

SUELO: Las producciones altas tienen lugar en suelos fértiles y de excelentes condiciones físicas, de no ser así se debe de hacer uso del recurso tecnológico para mantener en buen estado de productividad.

En las zonas cafetaleras prevalecen los suelos jóvenes. Los ideales son los provenientes de cenizas volcánicas que contienen alófano que le imprimen ciertas características al suelo como: menor densidad aparente, mayor porosidad, mayor retención de humedad, a pesar de una alta velocidad de infiltración, mayor capacidad de intercambio catiónico, mayor fijación de nutrientes especialmente el fósforo, pH ligeramente ácido (5 a 6). Díaz, (1 989)

Los suelos cafetaleros requieren de ser profundos, permeables, friables y de buena textura. Las tierras compactas arcillosas y de escaso drenaje no son aptas par el cultivo así como los suelos sueltos, arenosos y livianos, que retienen escasa humedad en verano. Zamora, (1998)

3.4. - PRINCIPALES ESPECIES DEL GENERO COFFEA:

Según Coste (1 978)

Coffea arabica L: Es la especie de mayor importancia económica, es la más conocida y con mayor distribución en las áreas tropicales y sub - tropicales del mundo, con más de 60 especies.

Coffea canephora (Pierr): Variedad robusta. Se siembra desde el nivel del mar hasta los 1 000 metros de altitud. Tiene alto contenido de sólidos solubles en el grano molido, muy importante en la preparación del café instantáneo.

Coffea liberia (Bull es Hiern): Crece en tierras húmedas y semi áridas.

3.5.- PRINCIPALES CULTIVARES DE LA Coffea arabica L.

Según Figueroa, (1 990)

- Typica: Se distingue por su color bronceado de las hojas que emergen del ápice del eje central como de las ramas laterales. La planta alcanza hasta cuatro metros de altura, el tallo por lo general consta de un solo eje vertical.
- Caturra: Es un mutante del Bourbon, presenta entre nudos cortos, la planta es de porte bajo, tronco de grosor intermedio, considerable número de ramas laterales, además presenta una alta productividad.
- Catimor: Es el resultado del Caturra Rojo con el híbrido de Timor. Se caracteriza por tener porte bajo, considerable número de ramas laterales, además presenta una alta productividad y resistencia a la roya amarilla Hemileia vastatrix.

3.6. - COSECHA

Por la diversidad de climas y regiones geográficas que tienen los países productores de café, no se puede habiar de una sola época de cosecha al año. La altura sobre el nivel del mar y los periodos de lluvia y verano, dan como resultado permanentes floraciones de mayor o menor intensidad, que a su vez determinan periodos de cosechas diferentes.

Está diversidad permite proveer al mercado mundial café fresco y de buena calidad, durante todo el año. Para garantizar la calidad del café, el productor debe cosechar solamente frutos maduros y bien pintones, hasta cosechar el árbol totalmente. Zamora,(1998)

3.7.- BENEFICIO: Según Zamora, (1 998)

Después de cosechado el café cerezo se beneficia para transformario en café pergamino seco apto para la comercialización e industrialización. En muchos países se utiliza el beneficio por vía húmeda, es decir, que se usa agua en las diferentes etapas del proceso. El beneficio cumple las siguientes etapas:

- DESPULPADO: Consiste en quitar la cáscara (pulpa) que cubre los frutos maduros. Se realiza el mismo día de la recolección, en máquinas despulpadoras. La pulpa resultante se descompone en fosas y se utiliza luego como abono orgánico.
- FERMENTACION: Busca descomponer el mucilago o capa viscosa que envuelve el grano. Este proceso se realiza en tanques y tarda de 12 a 24 horas, según la temperatura del lugar. También se puede hacer en equipos desmucilagenadores. Durante la fermentación una diastasa (pectosinasa y

pectasa), solubiliza la baba o mucílago.

La pectosinasa transforma la pectosa en pectina y azúcares, la pectasa transforma la pectina en ácido péptico. Al café no se debe fermentar por más de 24 horas por que forma ácido propiónico, que le imprime un sabor avinagrado.

- LAVADO: Se realiza dentro del tanque fermentador o en canales de correteo, buscando retirar el mucilago ya fermentado. Se utiliza agua limpia y el resultado es un grano de café totalmente limpio y húmedo.
- SECADO: Este proceso consiste en bajar la humedad del grano. En las fincas pequeñas el café se seca al sol y en las más grandes se utilizan secadoras mecánicas. Para secar el grano recién lavado a café seco de agua se necesita unas dos horas de sol, y luego hasta pergamino seco, unas 30 horas de sol aproximadamente, el café debe ser removido constantemente para que lograr un secado uniforme. Cuando el café se seca se obtiene el llamado café pergamino seco con 13 % de humedad. En las plantas de procesamiento sigue un proceso similar:
- * TRILLA: Consiste en desprender el pergamino o cascarilla que protege al grano. Después de realizarlo el café queda trillado y recibe el nombre de café verde. Se clasifica entonces para exportación y consumo nacional.
- CLASIFICACION: Después del trillado, el café se clasifica de acuerdo al color, tamaño y forma, utilizando para ello máquinas especiales y mano de obra (mujeres) que controlan con ojo clínico y especializado las variables enunciadas.

3.8.- IMPORTANCIA DEL CULTIVO DEL CAFETO: Según Sulca, (1 996)

El 95% del café producido en la Selva Alta, proviene de predios que tienen un área promedio de 3.3 Ha. Par este cultivo, no existiendo mayormente grandes extensiones que se dediquen a dicho cultivo.

El rendimiento promedio de café por hectárea en el ámbito nacional se ha mantenido constante en 12.5 qq/Ha en las ultimas décadas; en tal sentido, los mayores volúmenes de producción obtenidos últimamente, se atribuyen con más frecuencia al aumento de la superficie dedicada a este cultivo, que a una mejor productividad.

El café es la base de la economía de más de 500 000 familias que se dedican a este cultivo, cosecha, beneficio, transporte, procesamiento primario, industrialización y comercialización.

3.9.- CONSTANTES FISICAS Y FACTORES DE CONVERSIÓN EN CAFÉ:

Según **Uribe** (1 977)

Las Constantes Físicas, son las relaciones existentes entre el peso y el volumen, el contenido de humedad y otros aspectos en que se puede transformar el grano de cerezo maduro hasta café almendra.

Los Factores de Conversión, se refiere a una serie de valores que sirven para facilitar la transformación o cambio entre cantidades de un estado a otro del grano de café.

CONSTANTES FISICAS:

- Un metro cúbico de café cerezo maduro pesa 600 kilogramos.
- Un metro cúbico de café en baba pesa 800, kilogramos.
- Un metro cúbico de pulpa fresca sin apisonar, pesa 420 kilogramos.
- Un metro cúbico de pulpa fresca sin mojar pesa 270 kilogramos.
- Un metro cúbico de café húmedo pesa 650 kilogramos.
- Un metro cúbico de café seco de agua pesa 520 kilogramos.
- Mil kilogramos de café cerezo maduro dan 400 kilogramos de pulpa y 600 kilogramos de café en baba (222 kilogramos de café pergamino seco).
- El café húmedo recién lavado tiene 52% de humedad.
- El café "seco de agua" tiene 40% de humedad.
- La pulpa mojada tiene el 84% de humedad.
- La relación de café cerezo a pergamino seco del 12% de humedad es de 4.5
 Kg a 1 Kg (22.2% del café cerezo).
- La pulpa constituye el 40% en peso del café cerezo.
- Un grano de café pergamino seco pesa 0.22 gramos
- Una cerezo de café pesa 2 gramos.
- Una almendra de café pesa 0.18 gramos.
- Un tanque de fermentación de un metro cúbico tiene una capacidad equivalente a 800 kilos de café en baba, 500 kilos pergamino seco, 96 latas de café cereza, 1 344 kilos de café cerezo.

FACTORES DE CONVERSIÓN:

Café cerezo :	Café pergamino	0.222
	Café baba	0.6
	Café seco de agua	0.324
	Café húmedo recién lavado	0.4107
	Pulpa fresca	0.4
	Pulpa fresca mojada	0.48
Café pergamino:	Café en cerezo	4,5
	Café baba	2.71
	Café seco de agua	1.46
	Café húmedo	1.85
	Pulpa fresca	1.778
	Pulpa fresca mojada	2.133
Café baba :	Café pergamino seco	0.369
	Café cerezo	1.67
	Café húmedo	0.952
	Café seco de agua	0.538
•		
Café húmedo:	Café seco de agua	0.79
	Café cerezo	3. 09
	Café en baba	1.463

Café seco de agua:	Café pergamino seco de trilla	0.68	
	Café cerezo	3.09	
	Café húmedo	1.258	
	Café baba	1.843	
Pulpa fresca:	Café cerezo	2.4	
	Café pergamino seco	0.562	
	Pulpa fresca mojada	1.2	
Pulpa fresca mojada:	Café cerezo	2.4	
	Café pergamino seco	0.469	

3.10.- CAFÉ CEREZA: Es el fruto maduro y pintón tal como se recomienda recolectar.

Pulpa fresca

3.11.- CAFÉ EN BABA: Es el que resulta inmediatamente después del despulpado.

0.833

- 3.12.- CAFÉ HUMEDO: Es el café inmediatamente después de lavado.
- 3.13.- CAFÉ SECO DE AGUA: Es el café pergamino al cual se le ha secado parte del agua y que contiene un 40% de humedad aproximadamente.

- 3.14.- CAFÉ PERGAMINO SECO: Es el café que está ya listo para la trilla y tiene
 11% de humedad aproximadamente.
- 3.15.- LA PULPA FRESCA: Es la que resulta de un despulpado en seco.
- 3.16.- LA PULPA FRESCA MOJADA: Es la que resulta de un despuipado con agua y posterior arrastre con agua.

3.17.- RESULTADO DE EVALUACIONES PRELIMINARES EN ROQUE

(Lamas). Según Vásquez (1998)

Lata cerezo =

13.20 Kg

Lata cerezo =

45.75% de pergamino fresco

37.5% de pulpa

9.86% de descarte

6.90% de mucilago

3.18.- CONSTANTES FÍSICAS EN CAFÉ: Según Ovidio, (1 980).

Componentes de 1 000 Kg de café cereza.

CUADRO Nº 01: Constantes Físicas

COMPONENTE	Kg	%
Pulpa fresca	390	39
Baba o mucílago	220	22
Agua libre	80	8
Agua de Humedad	90	9
Cisco y ripio	30	3
Café trillado	190	19
Café cereza	1000	100

CUADRO Nº 02: Porcentaje de humedad del café en sus diferentes

etapas:

CAFĚ	HUMEDAD (%)
Recién Lavado	50 – 54
Seco de Agua	44 – 46
Almendra blanca	36
Almendra negruzca	30
Almendra uniforme (café común)	25
Pergamino seco	11.5

El café recién lavado necesita 2 horas de sol para estar seco de agua.

El café seco de agua requiere 30 horas sol para llevarlo a pergamino seco.

3.19.- AVANCES DE LA CAFICULTURA EN EL BENEFICIO: Según Castañeda (1997).

Para beneficiar 1 Kg de café pergamino se necesita 1 litro de agua.

Los granos de café cuando salen del lavado tienen 50-54% de humedad y para que puedan ser almacenados y luego procesados la humedad debe bajar entre 12-13%.

Para bajar está humedad se necesita 30-40 horas de sol.

CUADRO Nº 03: Porcentaje de humedad según el tipo de café.

TIPO DE CAFE	% DE AGUA
Café mojado	. 50 – 54
Seco de agua	40 – 48
Grano blanco	35 – 40
Grano opaco	25 – 35
Grano de color negro suave	20 – 25
Grano de color negro fuerte	15 – 20
Grano gris verdoso	12
Grano amarillento	8

MATERIALES Y METODOS

41. - UBICACIÓN DEL CAMPO EXPERIMENTAL:

El presente trabajo se realizó en las provincias de: Moyobamba en los distritos de Habana, Soritor, Yantaló, Jepelacio, Moyobamba y Nueva Cajamarca, Yorongos, Pardo Miguel, Elías Soplín en Rioja, Región San Martín, en un periodo comprendido de Abril a Agosto de 1 999 (fase de campo).

Lugares evaluados:

LUGAR	ALTITUD (m.s.n.m)
Santa Anita	950
Pacaypite	1 200
San Vicente	1 250
Gozén	1 225
Habana	780
Pajonal	750
Bellavista	1 200
Lucero	1 200
Santa Rosa	1 050
Bella Florida	1 030
Nuevo Tabalosos	1 000
San Juan de Río Soritor	880
Palestina	980
Libertad de Huascayacu	960
Naranjos	948
Pioneros Alto	980
Aguas Verdes	1 150

4.1.1. Ubicación Geográfica:

Alto Mayo:

Longitud oeste

: 76° 58′ 19"

Latitud sur

: 06° 03'38"

❖ Altitud

: 800 m.s.n.m.

4.1.2.- Condiciones Climáticas: Según SENAMHI (1 999)

CUADRO Nº 04: DATOS CLIMATOLOGICOS

	RIOJA			
T STONE	Temperatura	Temperatura	Promedio	Precipitación
MESES	mínima/mes	máxima/mes	mensual	mensual
	(°C)	(°C)	(°C)	mm
Abril	18.60	27.90	23.25	82.40
Mayo	18.70	27.80	23.25	207.50
Junio	18.70	28.30	23.50	50.70
Julio	16.70	28.00	22,35	62.30
Agosto	15.90	28.50	22.20	99.30
				1

CUADRO Nº 05: DATOS CLIMATOLOGICOS

	МОУОВАМВА			
MESES	Temperatura	Temperatura	Promedio	Precipitación
-	mínima/mes	máxima/mes	mensual	mensual
	(°C)	(°C)	(°C)	mm ·
Abril	18.40	27.20	22.80	81.90
Mayo	18.60	27.00	22.80	176.90
Junio	18.40	27.40	22,90	85.20
Julio	16.80	27.10	21.95	55.90
Agosto	16.30	27.90	22,10	73.90

4.2. - METODOLOGIA:

4.2,1. - DISEÑO EXPERIMENTAL Y CARACTERÍSTICAS DEL EXPERIMENTO

a) DISEÑO EXPERIMENTAL: El presente trabajo se adecuó al diseño completamente al azar (DCA) con arreglo factorial de 3 x 3 (Altitudes y Variedades) con nueve tratamientos.

Por cada tratamiento evaluado se realizó seis repeticiones haciendo un total de 54 unidades experimentales, teniendo como factor:

A1 = Baja (600 a 900 m.s.n.m.)

A: Altitudes A2= Media (900 a 1 200 m.s.n.m.)

A3= Alta (1 200 a 1 600 m.s.n.m.)

B1= Catimor

B: Variedades B2= Caturra

B3= Typica

b).- TRATAMIENTOS EN ESTUDIO

En el presente estudio se consideró como tratamientos a:

CUADRO Nº 06: TRATAMIENTOS EN ESTUDIO

TRATAMIENTOS	CLAVES
Zona alta variedad catimor	$\overline{T_1}$
Zona alta variedad caturra	T ₂
Zona alta variedad Typica	Т3
Zona media variedad catimor	T ₄
Zona media variedad caturra	T ₅
Zona media variedad Typica	T ₆
Zona baja variedad catimor	Т,
Zona baja variedad caturra	T ₈
Zona baja variedad Typica	T ₉

4.2.2 METODOLOGIA PARA CONDUCCION DEL EXPERIMENTO

4,2,2,1 DETERMINACION DE MEDIDAS

El presente estudio sé inició el 1° de Abril de 1 999 hasta el 15 de Agosto del mismo año. Los pesos se registraron en una lata de las siguientes dimensiones (0.235 x 0.235 x 0.349 m) que hace 0.0193 m³ y se ejecutó de la siguiente manera:

- a). Para el peso de un m³ de café cerezo maduro, se cosechaba solamente los granos maduros y bien pintones por cada variedad y altitud correspondiente al trabajo; la medición se realizó en una lata de 0.0193 m³ y luego por regla de tres simple se transformó a m³.
- b).- Para el peso de un m³ de café baba, el café recién despulpado se pesó en una lata de 0.0193 m³ y luego por regla de tres simple se transformó a m³.
- c).- Para el peso de un m³ de café húmedo, el café que recién se ha lavado y previamente escurrido el agua se pesó en una lata de 0.0193 m³ y luego por regla de tres simple se transformó a m³.
- d).- Para el peso de un m³ de café seco de agua (40 % H°), el café lavado se expuso al sol aproximadamente tres a cuatro horas luego se tomó una muestra representativa y se determinó la humedad correspondiente en un determinador de humedad luego se pesó en una lata de 0.0193 m³ luego por regla de tres simple se transformó a m³.

- e). Para el peso de un m³ café pergamino (13 % H°), el café que fue lavado se le dejó expuesto al sol aproximadamente treinta horas luego se tomó una muestra representativa y se determinó la humedad correspondiente en un determinador de humedad luego se pesó en una lata de 0.0193 m³ y luego por regla de tres simple se transformó a m³.
- f),. Para el peso de un m³ de pulpa seca o pulpa fresca, se tuvo que despulpar el café cerezo sin agua, luego se recogió la pulpa sin apisonar en una lata de 0.0193 m³ y luego por regla de tres simple se transformó a m³.
- g).- Para el peso de un m³ de pulpa mojada, se tuvo que despulpar el café cerezo con agua sin exceder, luego se recogió la pulpa sin apisonar en una lata de 0.0193 m³ y luego por regla de tres simple se transformó a m³.
- h).- Número de semillas por kilogramo de café húmedo, al café recién lavado previamente escurrido el agua se tomó una muestra y se pesó doscientos gramos en una balanza analítica posteriormente se contó el número de semillas de ésta muestra y por regla de tres simple se transformó a kilogramo.
- i).- Número de semillas por kilogramo de café seco en agua (40 % de H°), al café recién lavado se le dejó expuesto al sol aproximadamente tres a cuatro horas y se tomó una muestra para pesar doscientos gramos en una 24

- balanza analítica posteriormente se contó el número de semillas de ésta muestra y por regla de tres simple se transformó a kilogramo.
- j).- Número de semillas por kilogramo de café pergamino seco (13% de H°), al café recién lavado se le dejó expuesto al sol aproximadamente treinta horas y se tomó una muestra para pesar doscientos gramos en una balanza analítica posteriormente se contó el número de semillas de ésta muestra y por regla de tres simple se transformó a kilogramo.
- k).- Número de frutos por kilogramo de café cerezo, los frutos recién cosechado se tómó muestras al azar se pesó un kilogramo y luego se contó el número de frutos por kilogramo.
 - Número de latas por quintal de café pergamino seco (13 % H°) para esta variable se tuvo que medir el número latas de café pergamino seco (13% H°) que hacen 56 kilogramos de café pergamino en el Alto Mayo.
- Para determinar los factores de conversión del café se procedió de la siguiente manera:
 - El café cerezo cosechado se depositó en una lata de 0.0193 m³ a éste café cerezo se le pesó, luego se despulpó en seco a la pulpa resultante y al café baba se los pesó por separado.

Al café baba se le dejó que fermente, cumplido la fermentación se procedió a lavar, a éste café recién lavado o café húmedo se pesó para saber cuanto quedó a partir del café baba.

Al café húmedo se dejó expuesto al sol por un periodo aproximado de tres a cuatro horas, luego se tomó una muestra al azar para determinar la humedad del café seco de agua (40 % H°) y si tenía esa humedad entonces se pesaba el café para saber cuanto quedaba a partir del café húmedo.

Finalmente al café seco de agua (40% H°) se le dejó expuesto al sol por un periodo aproximado de treinta horas, se tomó una muestra al azar para determinar la humedad y si coincidía se pesaba el café pergamino seco (13 % H°) para saber cuantos kilos queda a partir del café seco de agua (40 % H°). De esta forma se conoció cuántos kilos de café pergamino seco(13 % H°) queda a partir de una cantidad determinada de café cerezo.

4.2.2.2 EVALUACIONES REGISTRADAS

Los parámetros que se evaluaron para las constantes físicas fueron:

- Peso de 1 m3 de café cerezo maduro.
- Peso de 1 m³ de café baba.
- Peso de 1 m³ de café húmedo.
- Peso de 1 m³ de café seco de agua (40% de H°).
- Peso de 1 m³ de café pergamino seco (13 % de H°)
- Peso de 1 m³ pulpa seca.
- Peso de 1 m³ pulpa mojada
- N° de semillas por kilogramo de café pergamino seco (13% H°).
- N° de semillas por kilogramo por café húmedo.
- N° de semillas por kilogramo de café seco en agua (40% de H°).
- Nº de frutos por kilogramo de café cerezo
- Nº de latas por quintal de café pergamino seco (13 % de H°)

4.2.2.2 EVALUACIONES REGISTRADAS

Los parámetros que se evaluaron para las constantes físicas fueron:

- Peso de 1 m3 de café cerezo maduro.
- Peso de 1 m³ de café baba.
- Peso de 1 m3 de café húmedo.
- Peso de 1 m³ de café seco de agua (40% de H°).
- Peso de 1 m³ de café pergamino seco (13 % de H°)
- Peso de 1 m³ pulpa seca.
- Peso de 1 m³ pulpa mojada
- N° de semillas por kilogramo de café pergamino seco (13% H°).
- Nº de semillas por kilogramo por café húmedo.
- N° de semillas por kilogramo de café seco en agua (40% de H°).
- Nº de frutos por kilogramo de café cerezo
- N° de latas por quintal de café pergamino seco (13 % de H°)

Los factores de conversión a determinar son los siguientes:

Café cerezo: Café pergamino seco (13 % de H°)

Café baba

Café seco de agua (40% de H°)

Café húmedo

Pulpa fresca

Pulpa fresca mojada

Café pergamino (13%):Café en cerezo

Café baba

Café seco de agua (40% de H°)

Café húmedo

Pulpa fresca

Pulpa fresca mojada

Café baba: Café pergamino seco (13% de H°)

Café cerezo

Café húmedo

Café seco de agua (40% de H°)

Café húmedo: Café seco de agua (40 % de H°)

Café cerezo

Café en baba

Café seco de agua: Café cerezo

Café húmedo

Café baba

Pulpa fresca: Café cerezo

Café pergamino seco (13% de H°)

Pulpa fresca mojada

Pulpa fresca mojada: Café cerezo

Café pergamino seco (13% H°)

Pulpa fresca

RESULTADOS

5.1 PRUEBA DE CONTRASTES PARA UN METRO CUBICO DE CAFÉ

CEREZO

C₁= Altitud baja con altitud media

C2= Altitud baja con altitud alta

C₃= Altitud media con altitud alta

C₄= Variedad catimor con variedad caturra

C5= Variedad catimor con variedad Typica

C₆= Variedad caturra con variedad Typica

HIPOTESIS

$$C_1$$
= Ho: $\Sigma \mu A1B1 + A1B2 + A1B3 = \Sigma \mu A2B1 + A2B2 + A2B3$

Ha:

$$C_2$$
= Ho: $\sum \mu A1B1 + A1B2 + A1B3 = \sum \mu A3B1 + A3B2 + A3B3$

Ha:

$$C_3 = Ho: \sum_{\mu} A2B1 + A2B2 + A2B3 = \sum_{\mu} A3B1 + A3B2 + A3B3$$

Ha:

$$C_4$$
= Ho: $\Sigma \mu$ A1B1 + A2B1 + A3B1 = $\Sigma \mu$ A1B2 + A2B2 + A3B2

Ha:

$$C_5$$
= Ho: $\Sigma \mu$ A1B1 + A2B1 + A3B1 = $\Sigma \mu$ A1B3 + A2B3 + A3B3

Ha:

$$C_6$$
= Ho: $\Sigma \mu$ A1B2 + A2B2 + A3B2 = $\Sigma \mu$ A1B3 + A2B3 + A3B3

На:

5.1 PESO DE UN M³ DE CAFÉ CEREZA

CUADRO Nº 07 ANALISIS DE VARIANZA POR EL METODO DE SHEFFE

PARA ÉL: METRO CUBICO DE CAFÉ CEREZO

FV	GL	sc	СМ	Fc	Fts	ıb	Significancia
• •	32			1	0.05	0.01	1
Tratamiento	8	10166.05	1270.73	30.49	2.15	2.93	**
Cı	1	1359.52	1359.52	32.62	4.06	7.23	**
C ₂	1	3899.38	3899.38	93.56	4.06	7.23	**
C ₃	i	653.99	653.99	15.69	4.06	7.23	**
C ₄	1	2021.25	2021.25	48,49	4.06	7.23	**
C ₅	1	6066.85	6066.85	145.56	4.06	7.23	**
C ₆	1	1084.49	1084.49	26.01	- 4.06	7.23	**
Error	45	1875.38	41.68				
Tetal	53	35669.03				_	

Donde: **= Altamente significativo

C.V = 0.97%

CUADRO Nº 08: INTERPRETACIÓN DE ANÁLISIS DE DUNCAN

PARA CAFÉ CEREZO

686.3	A
679.2	В
673.6	BC
667.8	CD
665.6	D
661.8	D
651.3	E
649.2	E
642.3	F
	673.6 667.8 665.6 661.8 651.3

Los tratamientos definidos con la misma letra no tienen diferencia entre ellos.

CUADRO N* 09: PESO DE UN METRO CUBICO DE CAFÉ BABA

rep.		a1			a2			a3		
ėj	P1	p2	p3	14	b2	b3	b1	b2	b3	
-	874.20	839.37	844.55	891.20	875.65	862.70	922.28	875.65	867.88	
2	898.96	844.55	847.15	919.69	868.24	854.90	911.92	878.24	870.47	
က	870.35	816.06	849.74	904.15	867.87	860.10	917.09	873.06	867.88	
4	873.06	810.88	853.63	906.74	862.69	830.55	917.09	870.45	870.47	
2	865.28	847.15	857.51	904.15	867.87	860.10	918.95	883.42	875.65	
9	885.30	857.52	847.15	904.15	870.45	853.55	911.92	884.72	870.46	
Suma	5267.15	5015.53	5099.73	5430.08	5212.77	5121.9	5499.25	5265.54	5222.81	47134.8
rom.	877.86	835.92	849.96	905.01	868.80	853.65	916.54	877.59	870.47	872.87

Cuadro Nº 10 Análisis de varianza para el : Peso Un Metro Cúbico de café baba.

					F tab	ab	SIGNIFICANCIA
2	ত	သင	CM	5 S	0.05	0.01	The state of the s
Trat	8	31617.77	3952.22	43.9			THE RESERVE OF THE PERSON OF T
A	2	10409.28	5204.64	57.81	3.21	5.11	‡
В	2	19661.25	9830.62	109.2	3.21	5.11	*
AxB	4	1547.25	386.81	4.3	2.58	3.77	‡
Error	45	4051.26	90.03				
Total	53	35669.03					

Altamente significativo 1.09%

11 11

; C

	THE RESERVE				I	ļ	l	
	HIGH	Taxana and	- Contraction	En A2			EN A3	
Clave factor B	From.	Bignif.	Invertactor B	Prom.	Signif.	lave factor	Prom.	Signif.
B ₁	877.86	8	9,	905.01	a	B ₁	916.54	a
B ₃	849.96	р	B ³	868.79	q	B ₂	877.59	q
B ₂	835.92	o	B2	853.65	o	B ₃	870.47	Ф

	En B1	1000		Fn B2	×		En B3
	0			-			1
Clave factor A	Prom.	Signif	Clave factor A	Prom.	Signif.	Clave factd	Prom.
	27.010						
A ₃	910.04	TO.	E	877.59	a	A ₃	870.47
			•			,	
42	905.01	۵	A ₂	R68 79	ď	A,	853.65
	35250 Magazin			000	3	7.	0000
Α.	877.86	O	Ą.	00 300	4	V	90 040

GUADRO Nº 11, PESO DE UN METRO GUBIGO DE CAFÉ HUMEDO

rep.		£			a2			a3		
c	19	b2	b3	1q	b2	p3	b1	p2	b3	
-	708.55	677.46	673.58	712.44	702.07	713.73	757.77	707.25	720.20	
2	703.37	675.00	683.93	712.44	691.72	715.03	778.50	709.84	715.03	
8	704.66	676.17	677.46	735.75	686.53	713.73	772.05	722.79	704.67	
4	709.85	678.76	681.45	740.93	68.89	712.44	756.50	733.16	713.73	
2	686.53	86.079	678.76	720.20	680.05	713.73	761.70	717.62	718.92	
	68.89	674.09	676.17	718.91	707.25	712.44	772.02	712.44	717.62	
Suma	4209.85	4052.46	4071.35	4340.67	4164.51	4281.1	4598.54	4303.1	4290.17	38311.8
orom.	701.64	675.41	678.56	723.45	694.09	713.52	766.42	717.18	715.03	709.48

Cuadro Nº 12 Análisis de varianza para el Peso Un Metro Cúbico de café húmedo.

					F tab	0	
3	5	SC	CM	5	0.05	0.01	SIGNIFICANCIA
Trat	80	35756.07	4469.51	73.18			
4	2	20476.68	10238.34	167.63	3.21	5.11	**
	2	12354.23	6177.11	101.14	3.21	5.11	•
4xB	4	2925.15	731.29	11.97	2.58	3.77	\$
Error	45	2748.48	61.08				
Fotal	53	38504.55					

= Altamente significativo = 1.10%

\$ °C

	feete	A (allitudes						
	En A1			En A2			En A3	
Clave factor B	Prom.	Signif.	Clave factor B	Prom.	Signif.	lave factor	Prom.	Sign
B,	701.64	a	B ₁	723.45	a	B ₁	766.42	в
Вз	678.56	p	B ₃	713.52	р	B ₂	717.18	٩
B ₂	675.41	p	B ₂	694.09	р	Вз	715.03	ρ

	lactor b (varienanes)	-					
	En B1			En B2			En B3
Clave factor A	Prom.	Signif	Clave factor A	Prom.	Signif.	Clave facto	Prom.
A ₃	766.42	a	A ₃	717.18	a	A ₃	715.03
A ₂	723.45	q	A ₂	694.09	Q	A ₂	713.52
Ą	701.64	o	Ą	675.41	O	Ą	678.56

GUADRO N° 13; PEBO DE UN METRO GUBICO DE CAFE BECO DE AGUA (40% DE Hº)

rep.		a1			a2			a3		
	p1	b2	b3	p1	b2	b3	b1	b2	b3	
1	580.31	571.24	564.77	580.31	582.90	575.13	607.51	642.49	595.85	
2	564.77	580.31	569.95	575.13	582.90	582.90	607.51	629.53	603.62	
3	583.70	577.72	572.54	585.50	584.19	585.49	604.92	616.58	599.74	
4	580.31	572.53	568.65	590.70	585.49	584.20	607.51	608.80	598.45	
5	584.20	569.95	563.47	588.08	584.19	580.31	594.56	636.89	599.48	
9	575.13	572.53	571.25	595.85	580.31	581.61	612.70	621.76	601.44	
Suma	3468.42	3444.28	3410.63	3515.57	3499.98	3489.64	3634.71	3759.05	3598.58	31820.9
orom.	578.07	574.05	568.44	585.93	583.33	581.61	605.79	626.51	599.76	589.28

Análisis de varianza para el : Peso Un Metro Cúbico de café seco de agua al 40% de H° Cuadro Nº 14:

					F tab	p	
A	ច	SC	CM	5	0.05	0.01	SIGNIFICANCIA
Trat	8	15995.24	1999.41	48.23			
A	2	13295.6	6647.8	160.35	3.21	5.11	1
8	2	1172.72	586.36	14.14	3.21	5.11	1
AxB	4	1526.92	381.73	9.21	2.58	3.77	1
Error	45	1865.57	41.46				
Total	53	17860.82					

Altamente significativo 1.09% 11 11

\$ °

STREET, STREET	AI	The Kerry	The second second	En A2			FA 63	l
Clave factor fi	Brom.	Sionif	Clave factor D	Brown	Clanic		2	
			Clark Grand	TIOIL.	oigni.	lave factor	Prom.	Signif
В,	578.07	a	B,	585.93	a	В,	626.51	n
B ₂	574.05	ap	B	583 33	c	' α	02 300	
			72	000	۵	7	67.509	Ω
53	568.44	p	B ₃	581.61	æ	B³	599.76	q

edios del factor A (altitud) dentro	En B2
CUADRO Nº 14.2: Duncan para los prom factor B (variedades)	En B1

factor B (variedades)	factor B (variedades)			L				
	CILDI			En BZ			En B3	
Clave factor A	Prom.	Signif.	Clave factor A	Prom.	Signif.	Clave facto	Prom	Sign
A ₃	605.79	a	As	626 51	0	٧	02.003	60
	1		?	0.030	0	٣	233.70	Ø
A ₂	585.93	٩	A ₂	583.33	ρ	A,	58161	_
Ą	578.07	υ	Ą	574.05	U	' ď	568 AA	. (

QUADRIO Nº 18: PESO DE UN METRO GUBICO DE CAFÉ PERGAMINO SECO AL 13 % DE Hº

			_							_						00000	75030	419.07
		h.2	2	A35 23	700.60	420.05	53.05 1	120 05	450.05	20 007	432.00	439.95	432.63	122 CA	10.00	SEGA 47	2334.16	432.36
24	~B	64	7.7	420 QR	720.30	70 ACA	10.4.74	00 007	07.774	37 LCY	427.40	410 20	10.03	410.60	412.00	2532 67	200000	422 28
		14	2	445 FO	20.5	437 60	701.04	140.44	40.4	420 42	100.16	469 01	400.01	478 70	410.10	2710 BB	21 10.00	451.78
		2		414 05		A77 78	744.40	42E 97	150.074	400 00	47.07	422 KR	20.02	414 46	71.1	2520 28	2020.20	421.54
2	-	P2		41192		405.74		404 15	101	A04 555	3	400 33	2	405 44	1.00	2439 13	2	406.52
		Σ		432.64		433.68		435 22	2	430 05		434 20		43.7 FA		2598 44		433.07
		2	2000	392.68		394.78		392.20		389.35		386.00		395.39		2350.4		391.73
.	5	2	27 606	392.48	4000	20.73	700	391.18	100	38.39	7000	392.43	2000	380.37	-9 0300	70'00'7	20.000	337.70
	7	D.I	44.54	10.4	440.00	4 0.03	440 000	410.55	240.00	473.03	200	4 N.08	30 067	450,00	2520 32	2370.12	07007	#20.12
rep.			•	-	·	7	c	9	•	4	4	6	4	0	0			PIOIII,

Cuadro Nº 16: Análisis de varianza para el : Peso Un Metro Cúbico de café pergamino seco al 13 % de Hº

					F tab	q:	
F	GI	SC	Č	F.C.	0.05	0.01	SIGNIFICANCIA
Trat	8	18263.76			1		
<	2	10541.09				ļ	***
6	2	7205.56	3602.78	76.44	2.04	7	4.4
AxB	4	517.11				-	***
Епог	45	2121.89					
Total	જ	20385.65					

Altamente significativo

Significativo 1,64%

8 H H

NO Nº 16 1. Burban para promedice del factor B (variable) deniri del factor A (attitud)

	A1			En A2			En A3		1
actor B	Prom.	Signif.	Clave factor B	Prom.	Signif.	lave factor	Prom.	Signif.	1
	420.12	a	B ₁	433.07	а	B ₁	451.78	а	1
	392.26	р	B ₂	421.54	۵	B ₃	432.36	ρ	
	391.73	q	B ₃	408.19	υ	B ₂	422.28	O	

CUADRO Nº 16.2: Duncan para promedios del factor A (altitud) dentro del factor B (variedad)

	B1			En B2			En B3	
Clave factor A	Prom.	Signif.	Clave factor A	Prom.	Signif.	Clave facto	Prom.	Signif.
A ₃	451.78	а	A ₃	422.28	æ	A ₃	432.36	o
A ₂	433.07	p	A ₂	408.19	٩	A ₂	421.54	Ф
Ą	420.12	ပ	Ą	392.73	υ	Ą	391.73	υ

9.0. PERO DE UN METRO CUBICO DE PULPA PRESOA SIN APISONAN

CUADRO Nº 17: PESO DE UN METRO CUBICO DE PULPA FRESCA SIN APISONAR

rep.		a1			a2			a3		-
	p1	b2	b3	p1	p2	p3	p1	p ₂	b3	
-	412.56	358.80	343.26	417.10	371.50	344.56	361.39	378.24	360.45	
2	417.10	356.21	304.40	433.94	373.05	356.22	371.76	380.22	359.78	
3	433.94	352.33	343.26	435.23	378.24	354.92	380.83	386.01	358.76	
4	415.24	362.39	325.13	430.05	388.60	356.22	366.58	383.42	361.23	
5	420.98	357.51	314.77	441.70	377.50	357.52	370.47	382.12	362.86	
9	424.87	355.45	269.45	424.87	379.44	343.25	360.10	381.44	361.45	
uma	2524.69	2142.69	1900.27	2582.89	2268.33	2112.69	2211.13	2291.45	2164.53	20198.7
rom.	420.78	357.12	316.71	430.48	378.06	352.12	368.52	381.91	360.76	374.05

Cuadro Nº 18: Análisis de varianza para el : Peso Un Metro Cúbico de pulpa fresca sin apisonar

					F tab	9	
Y	5	SC	CM	FC	0.05	0.01	SIGNIFICANCIA
Trat	8	58254.71	7281.84	61.54			
A	2	4722.31	2361.15	19.95	3.21	5.11	‡
8	2	36254.42	18127.21	153.19	3.21	5.11	‡
AxB	4	17277.98	4319.49	36.5	2.58	3.77	**
Error	45	5324.78	118.33				
Total	53	63579.48					

Altamente significativo 2.91%

11 11

* C.S

OUADRO Nº 18.1: Duncen para promedios del factor B (variedad) dentro del fector A (sittud)

1	l			i	l					
			Signal C	3	_	77	4	<u> </u>	•	,
	Co 42	2	Prom		301.04	5.00	269.62	70.00	360.78	
			ave factor	101011111111111111111111111111111111111			ń	•		•
	_			1		_	-	<u>-</u>	<u></u>	
			Signif		ď	!	م	,	U	
	En A2		Pog Eg		430.4B		378.06	!	352.12	
			Jave factor B		ъ <u>г</u>	_	12	_		
		,	Signiff.		60		_	,	U	
44	5	Orom	5	400.70	420.78		357.72	210 74	310.61	
		Clave factor B	O IONAL PARIO	ď	5	a	5	<u>.</u>	٠	

CUADRO Nº 18.2: Duncan Para promedios del factor A(altitud) dentro del factor B (variedades)

			Cirrit			70		3 3	4	3
			Drom		20.020	2000	250 40	306.12	316 71	-
			Clave facto	מימונים ומיכונים	Δ.	2	Δ,		₹	
			Signif		ū	·	α	3	٩	
	Fn R2	1	Promo		381 94	3	378.06		357.12	
			Clave factor A		£		4 2°		Ŧ	
ľ		2	Signir.		8	-			_	
	12	0	FIORI.	47 007	450.48	4	470.78	0000	2000.02	
		Clare factor A	Signe Iacol A	- V	ξ'	_<	₹_	Δ.	P	

17 HERO DE UN METRO GUNDO DE PLATA MOJADA

CUADRO Nº 19: PESO DE UN METRO CUBICO DE PULPA MOJADA

do.		a1			32			1.		ı
	7	61			4	The second second		83		
	10	70	23	p1	h2	43	3			7
•	ADE AA	270 05	20.000		***	20	La	b2	P3	
-	400.44	3/8.25	378.25	441.71	368 27	262 60	AEO OF	1000	3	7
2	414 50	378 25	270 22	00.77	17:000	207.03	409.60	328.29	354.33	
		010.60	010.00	44.30	3/3.23	352 33	ARE OF	274.70		1
2	400.25	357 25	301 45	420CA	700	200	100.00	3/1/0	355.76	
,	107		2	40704	301.00	355.52	449.48	365.02	252 50	I-
+	401.55	3/5.64	393 54	444 30	27.0 50	010		30.00	333.38	
Ľ	422.20	07 000		3	01.2.00	320.53	450.77	370 45	361 30	
0	452.20	363.42	388 00	445 60	370 30	2011			60.100	
9	AN 7Ch	0000		20.02	60.070	40,700	448.18	361.39	360 10	
,	C4:174	380.83	385.55	440 42	375 65	20000			200.10	
Suma	7A 17A A7	2000	27.00	1	00.00	300.25	444.30	370.47	367 88	
Pilipo	14.1.47	493.667	2315.12	2248 97	2221 04	2444 00	020000		00.100	The second second
mouc	411 01	275.04	1000	200	477	2144.80	2/08.53	2197.38	2153.04	207444
	411.31	3/3.61	385.85	374 83	370 17	257 40	0, ,,,		10.00.4	4.14.1
				200	20.00	05/100	451.42	366 23	358 84	200 50

Cuadro Nº 20: Análisis de varianza para el : Peso Un Metro Cúbico de pulpa mojada

					E toh		
2	7	000		1			
	5	30	S	<u>5</u>	0.05	001	SICHIELD AND IS
Trat	80	60639,88	7579 98	165.65			SIGNIFICANCIA
A	,	007	200	30.00			
	7	24.38	27.19	0.59	3.24	F 11	9
8	٠	01 00000		0	7.0		SS
2	7	32230.76	26115.38	570 73	3 24	E 44	-
AvB	,			0	17.0		
	4	8354.74	2088.68	45.65	2 58	277	1
Error	45	2059 1	AE 76		2.30	0.77	
Total			13.10				
lotal	23	62698.98			-		The second secon

** = Altamente significativo
NS = No significativo
C.V. = 1.73%

ALMET Nº 20 1. Transan para promoto del factor B (variedad) dentri del factor A (altitud).

	A1			En A2			En A3	
Clave factor B	Prom.	Signif.	Clave factor B	Prom.	Signif.	lave factor	Prom.	Signif.
B ₁	411.91	а	B ₁	374.83	а	B,	451.42	æ
B ₃	385.85	q	B ₂	370.17	ab	B ₂	366.23	р
B ₂	375.61	v	B ₃	357.48	٩	B ₃	358.84	٩

CUADRO Nº 20.2: Duncan para promedio del factor A (Altitud) dentro del factor B (variedades)

	B1			En B2			En 83		1
Clave factor A	Prom.	Signif.	Clave factor A	Prom.	Signif.	Clave facto	Prom.	Signif.	u
A ₃	451.42	а	A ₃	375.61	а	A ₃	385.85	а	
Ą	411.91	р	A ₂	370.17	ар	A ₂	358.84	۵	
A ₂	374.83	o	, A	366.23	۵	Ą	357.48	Ф	

CUADRO Nº 21: NUMERO DE FRUTOS POR KILOGRAMO DE CAFÉ CEREZO

																	_		_
	г		Τ-		_				_								07.20	04/00	664.00
			51	3	574	1/0	57.9	7/0	547	200	200	ZRC	223	0/0	593	3	2444	5	AGB AO
		93	64	3	5	700	204	\$	678		200	200	623	2	538	3	336B	3	56133
			Ā		55		දු දිරි		4 15		454		4		427		2640		440.00
			2	7 %	٠ ا	000	8	010	₹	955	200	6	080	070	0/0	4070	40/0	67.07.0	30.00
	a2		7 0	0,70	0/0	000	8	070	200	900	700	07.6	0,4	970	3	5177	27.0	60 000	007.00
		3	5	054	3	4,4	2	622	200	200	080	753	3	69.	3	2704	2	63.1 23	20.120
		h.2	3	734	2	744	-	755	3	759	200	740	2	745	2	4481		746 83	
	æ1	Ç¥	ž	25.0	3	283	3	200	700	BAB	2	973	5	α25		5729		954 83	2
	j	1		5.5		516		507		512	-	511		5,00		640E		513 17	
(Sa	<u>.</u>		-		~		m				נים		<u>۔</u>		Suma		Drom.		

Cuadro Nº 22: Análisis de varianza para el : Numero de frutos por kilogramo de café cerezo.

	SIGNIFICANCIA		*	**	**************************************	-	-]		
 	S				-					
de	0.01		5.11		3.77				anificativo	D
Ftab	0.05		3.21	3.21	2.58				Altamente significativo	4 74%
	FC	213.69	330.24	399.68	62.41	· •]		ı	•
	CM	168577.7	260528.35	315308.74	49236.85	788.9			*	
	၁၄	1348621.6	521056.7	630617.48	196947.41	35500.33	1384121.9		•	•
	ত	8	2	2	4	45	53			
2	Frat	4	(a	200	DE I	Total			•	

.

CUADRO Nº 22.1: Duncan pere los promedios del factor B (variedad) dentro del factor A (altitud)

	·	Signif.	8	Œ	q
	En A3	Prom.	568.50	561.33	440.00
		lave factor	B³	20	9
•		Signif.	в	Ф	c
	En A2	Prom.	862.83	678.33	631.83
		Clave factor B	B ₂	å	B.
		Signif.	a	۵	c
	Α1	Prom.	954.83	746.83	513.17
		Clave factor B	B2	e B	9,

CUADRO Nº 22,2: Duncan para promedio del factor A (altitud) dentro del factor B(variedatt)

	Signif.	9	Φ	O
En B3	Prom.	746.83	678.33	568.50
	Clave facto	Α,	\$	₹
	Signif.	8	۵	u
En 82	Prom.	954.83	862,83	561.33
	Clave factor A	Aı	A2	As.
	Signif.	a	۵	U
B1	Prom	631.83	513.17	440.00
	Clave factor A	A ₂	ď	· ·

\$

6.6. NUMERO DE BEMILLAB POR KILDGRAMO DE CAPÉ HUMEDO

CUADRO N° 23: NUMERO DE SEMILLAS POR KILOGRAMO DE CAFÉ HUMEDO

9		a 1			a 2			a 3		
	7	P2	b3	ā	P2	ន្ន	b1	b2	b 3	
-	2980	4150	3405	2400	3250	3030	2380	2730	2880	
	3000	4185	3572	2440	3305	3110	2330	2770	2860	
	2920	4350	3505	2635	3500	3233	2420	2840	2800	
4	2940	4215	3397	2490	3550	3156	2410	2790	2770	
40	3040	4328	3510	2530	3470	3218	2350	2780	2800	
9	2970	4250	3393	2815	3485	3238	2420	2570	2820	
,	17850	25478	20782	15310	20560	18985	14310	16480	16930	166685
	2975.00	4246.33	3463.67	2551.67	3426.67	3164.17	2385.00	2746.67	2821.67	3086.76

Análisis de varianza para el Numero de Semillas por Kilogramo de café húmedo Cuadro Nº 24:

2	ত	သင	CM	FC	0.05	0.01	SIGNIFICANCIA
Trat	8	15512505	1939063.13				
¥	2	7503617.6	3751808.8	481.49	3.21	5.11	**
8	2	6397479.2	3198739.57		3.21	5.11	\$
AxB	4	1611408.3	402852.07	51.7	2.58	3.77	t
Error	45	350646.83	7792,15				
Total	53	15963152					

Altamente significativo 2.86% (I I)

°.∨.

OUADRO Nº 24.1 Duntain pere los promedios del factor B (variedad) dentro del factor A (stittud)

		l			
•		Sinnif	2 2	1 5	ء ,
	En A3	Prom	2821.67	2746.67	2385.00
		lave factor	82	. <u> </u>	້ ຄົ
		Signif		٠,	່ ວ
	En A2	Prom.	3426.67	3164.17	2551.67
	~a	Clave factor B	B	_ 6	<u>.</u> б
		Signif.	æ	۵	. Đ
	Αı	Prom.	4246.33	3463.67	2975.00
		Clave factor B	197	B ₃	3,

CUADRO Nº 24.2: Duncan para los promedios del factor A (altitud) dentro del factor B (variedad)

Clave factor A A ₁	En 81 Prom. 3 2,975.00 2	Signif.	Clave factor A	 ₩ }¯	Signif. a b	Clave facto A ₁ A ₂	En B3 Prom. S 3463.67 a 3164.17	Signif. a b
3	2,385.00	c	A ₃	2746.67	Ü	Ą.	2821.67	v

BING NUMBRO DRIBENILLAR POR KILOGRAMO DE CAPÓ BECO DE ACUA (40 % DE H*)

CUADRO N° 25: NUMERO DE SEMILLAS POR KILOGRAMO DE CAFÉ SECO DE AGUA (40 % DE H°)

	.			1	1		_	201014	3722.48
	b3	3480	3500	3420	3510	3500	3500	20910	3485.00
6. 6.3	P2	3390	3200	3370	3370	3220	3400	19950	3325.00
	b1	3100	2980	3050	2980	3120	3050	18280	3046.67
	ьз	3795	3700	3810	3775	3800	3790	22670	3778.33
a2	b2	3690	3675	3620	3765	3809	3785	22344	3724.00
	b1	3770	3650	3580	3730	3690	3810	22230	3705.00
	P3	4101	4095	4045	4100	4020	4107	24468	4078.00
e_	79	4439	4438	4510	4325	4345	4575	26632	4438.67
	70	3360	3300	3910	3960	3880	3920	23530	3921.67
.de		1	2	£	4	5	9	Suma	prom.

Cuadro Nº 26: Análisis de varianza para el : Numero de Semilías por Kilogramo de café seco de agua al 40 % de H°

	SIGNIFICANCIA		**	**		
F tab	0.01		5.11	5.11		
Ft	0.05		3.21		2.58	
	FC	258.74	849.94	104.47	40.27	
	CM	1016929.07	3340543.63	410614.3	158279.19	
	SC	8135432.6	6681087.3	821228.59		
	ত	8	2	2	4	
	FV	Trat	∢	8	AxB	

2 821228.59 410614.3 104.47 3.21 5.11 4.27 4.27 2.58 3.77 4.53116.74 158279.19 40.27 2.58 3.77 5.31 5.3 8312297.9 40.27 2.58 3.77 4.5 8312297.9 40.27 2.58 3.77 4.5 8312297.9 40.27 2.58 3.77 4.5 8312297.9 40.27 2.58 3.77 40.27 2.58 3.77 40.27 2.58 3.77 4.5 8312297.9 40.27 2.58 3.77 4.58 40.27 2.58 3.77 4.58 40.27 2.58 3.77 4.58 40.27 2.58 3.77 4.58 40.27 2.58 3.77 4.58 40.27 2.58 3.77 4.58 40.27 2.58 3.77 4.58 40.27 2.58 3.77 4.58 40.27 2.58 3.77 4.58 40.27 2.58 3.77 4.58 40.27 2.58 3.77 4.58 40.27 2.58 3.77 4.58 40.27 2.58 3.77 4.58 40.27 2.58 3.77 4.58 40.27 2.58 3.77 4.58 40.27 2.58 3.77 4.58 40.27 2.58 3.77 4.58 40.27 2.58 3.77 4.58 40.27 2.58 3.77 4.58 40.27 2.58 40.27

Епо

Total

CUADRO Nº26.1: Duncan para los promedios del factor B (variedad) dentro del factor A(altitud)

		Signif.	æ	۵	U
	En A3	Prom.	3485.00	3325.00	3046.67
		lave factor	B ³	ď.	ē
		Signif.		æ	æ
	En A2	Prom.	3778.33	3724.00	3705.00
,		Clave factor B	B ₃	25	B,
		Signif.	В	۵	င
	En A1	Ргот.	4438.67	4078.00	3921.67
		Clave factor B	82	B	В,

CUADRO Nº 26.2: Duncan para los promedios del factor A (altitud) dentro del factor B(variedad)

	Signif.	a	Д	ပ
En B3	Prom.	4078.00	3778.33	3485,00
	Clave factd	Α,	₹	\$
	Signif.	8	Δ.	v
En 82	Prom.	4438.67	3724.00	3325.00
	Clave factor A	₩,	ď	A ₃
	Signif.	8	ф	C
En B1	Prom.	3921.7	3705.0	3046.67
	Clave factor A	Ą	Ą	A ₃

6.11.-NUMBRO DE JEMILLAS POR KILOGRAMO DE CAFÉ. PERGAMINO SECO AL 13 % DE Hª

CUADRO N° 27: NUMERO DE SEMILLAS POR KILOGRAMO DE CAFÉ PERCAMINO SECO AL 13 % DE H°

	b 3	210	240	280	96	020	340	31300 283782	ľ
68	b2	<u> </u>		<u> </u> 		<u> </u>		ļ	
	P4	4140	4130	4140	4210	4160	4130	24910	4151.67
	ន	5370	5324	5438	5379	5525	5483	32519	5410 83
#2	p 2	2200	5355	5445	5360	5260	5330	32250	5375.00
	Þ	4410	4420	4440	4400	4460	4480	26610	4435 00
	b3	5880	5925	6020	6105	5995	6223	36148	6024.67
a1	b2	5580	8	5520	5530	5470	5530	33030	2505.00
	b1	6020	5800	5830	5995	2830	5920	35495	5915.83
ē.		-	2	က	4	3	9	Suma	prom.

Análisis de varianza para el: Numero de Semillas por Kilogramo de café pergamino seco al 13% de H° Cuadro Nº 28;

					H F	det	
£	ō	SC	CM	FC	0.05	0.01	SIGNIFICANCIA
Trat	8	18054483	2256810.34	587.5			
4	2	8757176	4378588.02	557.8	3.21	5.11	‡
80	2	4	2562253.69	326.41		1	***
AxB	4	-	1043199.82		2.58	3.77	**
Error	45	353239	7849.76		 		
Total	53	18407722			,		
						-	

Alamente significativo 1.69%

CUADRO Nº 28.1; Duncan pera los promedios del factor B (variedad) dentro del factor A (altitud)

En A3 Prom. 5253.33 5216.67 4151.67 lave factor கு ஆகு 5419.83 5375.05 4435.00 Prom. En A2 Clave factor B ஐ ஜ ஜ Signif. Prom. 6024.67 5915.83 5505.00 En A1 Clave factor B ã a a

CUACRO Nº 28.2: Duncan para los promedios del factor A (altitud) dentro del factor B (variedad)

	En 81			En B2		En B3		
Clave factor A	Prom.	Signif.	Clave factor A	Prom.	Signif.	Clave facto	Prom.	Signif.
Ą,	5915.83	æ	₽,	5505.00	i i	Α ₁	6024.67	· 62
. A	4435.00	۵	Ą	5375.00	Д	Ą,	5419.83	٩
	4151.67	C	A ₃	5253.33	υ	Ag	5216.67	o

5.12. REBULTADOS DE EVALUACION DE FACTORES DE CONVERSION VARIEDAD TYPICA

CUADRO N° 29: TYPICA EN ZONA BAJA

		Ë		6.719	910	0175	0.218		0.220	0.70	17.7	0.220		6.219
		3%	ç	2.720	2715	4.6	2.685		2.7.5	2 730		2.725	2 210	CI).7
		ខ្ម	0.232	2	0.324		0.324	0 227	1.77	0.326		6.329	0 376	3
	1907	40%	4 000	3	4.055	200	3,985	4035	1000	4.050	750	4.U/>	11109	
	3	2	0.404		0.406	34,0	Ç.	0.408		0.406	90,0	9	0.406	
	ů		5.015	1000	2007	4 025	200	5.035		0.00	* 0.50	3	5,036	
ĺ	H.		0.554	100	U.332	0.551		1.557	2000) (i)	0.557		0.555	
	9	100	0.875	V00 Y	20.0	6.780	200	0.872	8	275	6.905	1	0.8/4	
	ပ္		440	0 448 ·		÷450	0 1/12	2	0.443		.443	477.0	2	
	Pulpa	* 405	7	5.585		2.220	2476		5.50\$	200	2490	2 K19	2000	
Č	3	12400		12.475	2000	3	12.350		12.425	2 400	70.4	2.302		
Ronation	1	~~ ~	5		İ	-	8		_	20		×		

CUADRO Nº 30 : TYPICA EN ZONA MEDIA

	_	_		_	_	_			_	_	_	_	
	,	ပ္	76.0	0.459	0.227		0.228	4	777.0	866.0		0.223	
	è	15%	2000	4.07	2.865		2.870	2776	-2.113	2.850		2.805	,,,,
	6	2	0.331		0.339	45.0	0.337	135	2400	0.342		0.332	134
	7007	4	_	÷	4.280	_	•		•		_	- 1	4.204
	is C		0.407		U.424	0.415		0.406		0.420	0.41.9	716	0.414
	÷	1	2.12	35.0	2.50	5225		2000	4000	7.73	4 184	,	5.205
[2	27.0	U.34 /	ACCC	200	0.552	2000	/00.0	0 550	7000	5		0.552
٤	כפ	2047	0.075	7 015	3	6.950	2002	0.70	6 900		5 9 5	3	0.747
L	2	D AKT		0.444		V.448	SPVU	2	0.448		÷++	0770	2,40
Dilino		5.705		2.610	6.650	000.	\$ 550		5.600	0773	חרמי	6,638	
2		12,600	100	7.07	12 600	3	2.525		12.500	12 575	200	12.571	
Repetición	Į	5	1	70	60		2	30	co	28		×	

CUADRO Nº 31 : TYPICA EN 20NA ALTA

	3		0,233	0.237	0 234	1	0.230	0.238	0.232	0 136	?
	136%		7.950	2.995	3.020	3 010	2	3.015	3,000	2 908	
	6		ر د د	0.353	0.350	0.358		200	0.346	0.353	
	40%	4 250	1.3.30	4.465	4.525	4 575	1	4.00	4.475	4.508	
	Ş	0.430		0,441	0.435	0.436	0 446		0.440	0.438	
	CHE	5 450	1	000	5.625	5.565	5 650		30	5.594	
	2	0.538	0 5.40	À	0.551	0,546	0.559	0 6 60	RCP I	0.549	
٤	9	6.825	9 050		97.	0.570	7.075	7 134	127	5	
-0		0.462	0.451			45	0.441	0.450		U.451	
Dulma	a S	2.830	5.700	2000	200	200	5.590	5 825	2763	3	
2	2000	12.073	12.650	12 025	27.6	1	2007	12.950	12 773		
Repetición	ē	5	20	8	8		3	8	×		

3.15. HEBULTADOS DE EVALUACION DE FACTORES DE CONVERSION VARIEDAD CATURRA

CUADRO Nº 32; CATURRA EN ZONA BAJA

										, , ,	
Banatiaika	رر	Pulna	G	CB	2	ť	ī.	40%	FC	1.3%	2
Personal	3						404	0.00	207	2 600	1100
-	12 550	200	0.454	6.850	0.546	5	7900	0.00		6.000	
			I			100	20.4	366.5	0.203	2 683	0.716
8	12 450	2.650	0.45	908.9	5	4.730	7000	3.113	2	1	
70					,		1000	2016	0.20K	2 6RO	0.214
2	12.500	\$678	4	6.825	9	2.7	700	7.00	3	700,4	
				900		7 050	C 103	1 702	A 209	2.678	0.211
2	12,700	5.700	54.0	3	3	4,0.3	V.JOE	3			
		1	77.7	C 0.70	0.544	4 800	0.380	3.805	9050	2.675	0.212
90	C79.7	3.733	0.430	2/0.5					1	207.0	****
ž	10.650	\$175	0 444	7.035	0.556	4.855	0.384	3.795	300	7.065	117.0
8	7.0.7					1	200	, 80.4	0.360	3 600	1160
*	12 570	5.683	0.452	6.89	0.548	4.8	796.0	3.00	7000	3	2
•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										

CUADRO Nº 33; CATURRA EN ZONA MEDÍA

									-	,444,	
-77:1-11	,	Dellan	ű	£	ç	Ĵ	몺	\$5	2	13%0	rc
Kepellong	ز	1	•	•						45.0	7100
-	13.750	322.9	0.500	6.375	0050	4.915	0.385	3.840	0.301	2.730	U.214
5	2			1			0000	4 0 60	2000	2.360	0.713
5	12 050	5003	0.465	6.925	0.535	4.725	0,730	3,830	1,63.0	6.1.5	
70	200						4	0000	#400	2 740	0 212
8	12 050	4 204	689	6.725	0.520	506.4	7/2	J. 5 CU	0.4375	7.740	3
3	14.767					1	3	0000	902.0	3775	0.287
2	19 676	4 375	2400	6.350	105.0	4.850	0.363	3.5	2000	C+1.7	1
3	14.07	1						3		9000	414
	14 050	5 OC	0.451	7.050	3	5.075	0.395	3,500	4	20,7	0.4.14
3	2000	3						2000	9	200 0	0.017
ž	13005	\$ 065	0.462	096.9	6.538	200	3333	5,473	200	2.00.2	V.4.1 (
3	6.763	,,,,,					3	,,,,,,	1000	274	A14
>	13 847	6.116	0.476	6.731	0.524	4.962	386	3,304	0.30	4.733	0.414
<	Towar										

CUADRO Nº 34 : CATURRA EN ZONA ALTA

╀
÷
<u>.</u>
÷
2 900
+
051.0
3,017

5.14, RESULTABOS DE EVALUACION DE FACTORES DE CONVERSION VARIEDAD CATIMOR

CUADRO Nº 35 : CATIMOR EN ZONA BAJA

Fc		Pulpa
9	_	_
018'9	-	9
0 6.995	9	9
5 6.915	_	_
_	0.465 6.870	0.465
0 6.939	_	_
4 6.905	0.464 6.90	Ľ

Y
EDI
Σ
¥
õ
Z
R E
ō
É
CA
. 9
3
õ
DR
Ν
C

tepetición	သ	Pulpa	Fc	CB	Fc	CH	Fc	40%	Fc	13
10	13.350	5,900	0.442	7.450	0.558	5.375	0.403	4.275	0.320	2.775
02	13.150	6.250	0.475	006'9	0.525	4.930	0.375	3.940	0300	2
03	13.050	5.975	0.458	7.075	0.542	4.850	0.372	3.785	0.290	2
04	13.100	6.400	0.489	6.700	0.511	4.950	0.378	3.960	0.302	2
05	13.000	5.800	0.446	7.200	0.554	5.375	0.413	4.275	0.329	2
90	13.000	000'9	0.462	7.000	0.538	5.350	0.412	4.060	0.312	2
×	13.108	6.054	0.462	7.054	0.538	5.138	0.392	4 040	0 300	,

CUADRO Nº 37; CATIMOR EN ZONA ALTA

	0	ľ	L	_	L	Ľ	5
40%	4.200	4.100	4.325	4.250	4.000	4.175	A 175
Fc	0.389	0.396	0.386	0.379	0.384	0.396	0.388
CH	5.175	5.225	5.100	5.025	5.125	5.150	5.133
Fc	0.551	0.545	0.557	0.542	0.541	0.556	0.549
CB	7.325	7.200	7.350	7.175	7.225	7.225	7.250
Fc	0.449	0.455	0.443	0.458	0.459	0.444	0.451
Pulpa	5.975	000.9	5.850	6.075	6.125	5.775	2963
သ	13.300	13.200	13.200	13.250	13.350	13.000	13217
Repetición	10	02	03	40	05	90	X

6.15. RESULTABOR DE PROMEBION DE LA RVALLIACION DE PACTOREN DE CONVERSION EN EL ALTO MAYO

CUADRO Nº 38. FACTORES DE CONVERSION PROMEDIO DE CAFÉ PARA LA REGION ALTO MAYO

TIPO DE	CAFÉ	CAFE	CAFÉ	CAFÉ SECO	CAFÉ PERGAMINO	Vatina	PULPA
CAFÉ	CEREZO	BABA	HUMEDO	DE AGUA (40 % H°)		FRESCA	MOJADA
CAFE CEREZO		145.0	0.383	0.305	0.215	0.459	0.463
CAFEBABA	1.849		0.709	0.564			
CAPE HUMEDO	2,610	1.412		262.0	0.560		
CAFE SECO DE AGUA AL 40 % DE H°	3.283	1.776	: ;		:		
CAFE PERGAMINO SECO AL 13% DE H	4.666	2.523	1.788	1.422		2.143	2.150
PULPA FRESCA	2.179	179	0.835	0.66\$	0.468		1.008
PULPA MOJADA	2,162	1.170	0.829	0.660	0.464	0.992	

5.16.- NUMERO DE LATAS POR QUINTAL DE CAFÉ PERGAMINO AL 13 % DE H° VARIEDAD CATIMOR

CUADRO Nº 39: NUMERO DE LATAS POR QUINTAL DE CAFÉ PERGAMINO AL 13 % DE Hº VARIEDAD CATIMOR

ZM	ZA
6.71	6.51
6.69	6.63
6.67	6.59
6.75	6.60
6.68	6.19
6.71	6,06
6.70	6.43
	6.71 6.69 6.67 6.75 6.68 6.71

5.17.- NUMERO DE LATAS POR QUINTAL DE CAFÉ PERGAMINO AL 13 % DE H° VARIEDAD CATURRA

CUADRO Nº 40: NUMERO DE LATAS POR QUINTAL DE CAFÉ PERGAMINO AL 13 % DE Hº VARIEDAD CATURRA

ZB	ZM	ZA
7,40	7.04	6.90
7.37	7.13	6.83
7.42	7.18	6.87
7.50	7.05	6.79
7.40	7.09	6.94
7.32	7.16	6.91
7.40	7.11	6.87

5.18.- NUMERO DE LATAS POR QUINTAL DE CAFÉ PERGAMINO AL 13 % DE H° VARIEDAD CATURRA

CUADRO Nº 41: NUMERO DE LATAS POR QUINTAL DE CAFÉ PERGAMINO AL 13 % DE Hº VARIEDAD TYPICA

ZB	ZM	ZA
7.39	7.01	6.67
7.35	6.87	6.75
7.40	6.81	6.75
7.46	6.76	6.71
7,52	6.85	6.71
7.34	7.00	6.68
7.41	6,88	6.71

V1.- DISCUSIONES:

A.- EVALUACIONES DE CONSTANTES FISICAS

1). Para el peso de un m³ de café cerezo:

En el cuadro Nº 07 se utilizó un análisis de varianza por el método de Sheffe para comparar mejor los factores evaluados encontrando que las comparaciones evaluadas tienen una alta diferencia significativa del peso de un m³ de café cerezo en:

C₁= Altitud baja con altitud media

C2= Altitud baja con altitud alta

C₃= Altitud media con altitud alta

C4= Variedad catimor con variedad caturra

C₅= Variedad catimor con variedad Typica

C₆= Variedad caturra con variedad Typica

Se determinó que el tratamiento T₁ tiene mayor peso por metro cúbico en altitudes sobre los 1200 m.s.n.m. con respecto a las demás variedades evaluadas con valor de 686.32 Kg/m³. Como se puede observar en el cuadro N° 08.

Observando a nivel campo que el catimor tiene un mayor desarrollo del mesocarpio (pulpa), es probable que ocurra esto por el aporte genético de sus antecesores y debido a que en las partes más altas los suelos son más fértiles. Así mismo las condiciones climáticas como una alta humedad relativa y una mayor precipitación permite un mejor llenado de grano.

2). Para el peso de un m³ de café baba.

Se puede observar en el cuadro y gráfico N° 10.1 comparando el factor B (variedades) dentro del factor A (altitudes) los tratamientos que han obtenido mayor cantidad de mucílago en altitudes baja, media y alta son el T₇, T₄ y T₁ con valores de 877.86; 905.01y 916.54 Kg/m³ respectivamente; Como se puede observar en el cuadro N° 09.

Observando entonces que existe una relación directa con el café cerezo por que a mayor desarrollo del mesocarpio existe mayor formación de mucílago.

Referente a como influye la altitud dentro de las variedades, se observa en el cuadro y gráfico Nº 10.2 que a altitudes sobre los 1200 m.s.n.m las variedades obtienen mayor cantidad de mucílago; siendo más notorio en la variedad catimor, esto se debe a que en las partes más altas los suelos son más fértiles. Así mismo las condiciones climáticas como humedad relativa y precipitación permiten un mejor llenado del grano.

3), Para el peso de un m³ de café húmedo.

En el cuadro y gráfico Nº 12.1 al observar los resultados obtenidos del factor B(variedades) dentro de cada altitud, se tiene que la variedad catimor (B₁) arrojó mejores resultados que las variedades caturra y typica en las tres diferentes altitudes (A₁, A₂ Y A₃). Este parámetro también guarda una relación directa con el mayor desarrollo del fruto del café cereza. Aquí se pierde el agua libre y una influencia del las condiciones climáticas y el suelo.

4). Para el peso de un m3 de café seco de agua (40 % H°).

En el cuadro y gráfico Nº 14.1 se puede apreciar que las tres variedades arrojaron resultados similares a altitudes A₁ (600 – 900 m.s.n.m) y A₂ (900 – 1200 m.s.n.m) pero la variedad caturra arrojó resultados superiores a las variedades catimor y typica a mayor altitud (1200 – 1600 m.s.n.m.). Para este parámetro se presume que haya existido una mayor retensión del agua de constitución dentro el grano en la variedad caturra.

En el cuadro y gráfico Nº 14.2 se corrobora que la menor altitud (600 – 900 m.s.n.m.) afectó el resultado de las variedades, siendo por el contrario la altitud más alta de 1200 a 1600 m.s.n.m. la que menos afectó los resultados de las variedades debido que en la zonas altas el agua de constitución demora en evaporarse debido a una mayor humedad relativa del medio y por el menor número de horas de sol efectivas.

5). Peso de un m³ de café pergamino seco (13% H°).

En el cuadro y gráfico 16.1 se observa que la variedad catimor (B₁) superó estadísticamente a las variedades caturra y Typica en las tres altitudes. Esta aparente contradicción con el anterior parámetro se presume a que el llenado de grano del híbrido catimor haya sido más homogéneo por lo tanto se ha tenido menos granos deformes y vanos, y por consiguiente el catimor expresa un mayor peso a humedad de 13 %

En el cuadro y gráfico Nº 16.2, el análisis estadístico arrojó interpretaciones iguales a los obtenidos en los cuadros 10.2, 12.1 y 14.2, donde las altitudes más bajas afectan los resultados obtenidos por las variedades de café evaluados. Se observa que ha mayores altitudes el llenado de grano se da por tener una relación directa con la fertilidad del suelo y las condiciones climáticas ya que estos influyen en el tamaño y peso del grano.

Peso de un m³ de pulpa fresca sin apisonar.

En el cuadro y gráfico Nº 18.1, la variedad catimor arrojó resultados superiores estadísticamente a las variedades caturra y typica en las altitudes A₁ y A₂ (600 – 900 y 900 – 1200 m.s.n.m. respectivamente), pero a mayor altitud (1200 – 1600 m.s.n.m.) la variedad caturra arrojó mejores resultados que las variedades catimor y typica. Es probable que a mayor altitud el caturra obtenga este resultado debido al mal estado de la máquina permitiendo que junto al mesocarpio pase parte del endosperma mordido por la camiseta de la despuipadora. Este parámetro no reporta diferencias estadísticas entre las variedades.

En el cuadro y gráfico Nº 18.2, la interpretación estadística es similar a los obtenidos en el cuadro 10.2, 12.2, 14.2 y 16.2 donde las bajas altitudes afectan el resultado de las variedades en su conjunto. Como consecuencia de la menor fertilidad de los suelos, y el clima.

7). Para el peso de un m³ de pulpa mojada.

En el cuadro y gráfico 20.1.- podemos observar que la variedad catimor arrojó resultados estadísticamente superiores a las variedades caturra y typica en las tres altitudes (baja, media y alta) siendo la variedad caturra (B₂) la que se comportó mejor que la variedad typica (B₃) a altitudes media (900 – 1200) y alta (1200 – 1600). Este parámetro tiene relación directa con el peso del café cerezo, entonces, es lógico que se den éstos resultados.

En el cuadro Nº 20.2 El tratamiento T_7 pesa más a altitudes bajas, mientras que el tratamiento T_8 y T_9 pesan menos a altitudes bajas.

08). Número de frutos por kilogramo de café cerezo.

Se puede observar en el cuadro y gráfico Nº 22.1. - La variedad caturra arrojó mayor número de frutos/ Kg de café cerezo a altitudes bajas (600 – 900 m.s.n.m.) y medios (900 – 1200 m.s.n.m.) seguidos de las variedades typica (B₃) y catimor (B₁) respectivamente.

Por otro lado las variedades typica y caturra arrojaron mayor número de frutos a mayor altitud (1200 – 1600 m.s.n.m.) en comparación a la variedad catimor (B₁). Como se puede observar la variedad caturra y typica necesitan mayor número de frutos para hacer un kilogramo, este parámetro se da por que el caturra y el typica tienen frutos pequeños debido a sus características genéticas.

En el cuadro Nº 22.2. Al parecer no tiene lógica la interpretación estadística del efecto de las altitudes dentro de cada variedad, posiblemente debido a factores externos que no se controlaron. En campo se pudo observar que a menor altitud las variedades necesitan mayor número de frutos para hacer un kilogramo mientras que en zonas altas necesitan menor número de frutos para hacer un kilogramo las tres variedades.

09). Número de semillas por Kilogramo de café húmedo.

Como se puede observar en el cuadro y gráfico N° 24.1 la variedad caturra arrojó mayores promedios a altitudes bajos y medios, seguido de la variedad typica y catimor respectivamente, así mismo a mayor altitud las variedades caturra y typica arrojaron promedios superiores a catimor en la mayor altitud (1200 – 1600 m.s.n.m.). Como se puede observar la variedad caturra y typica necesitan mayor número de semillas para hacer un kilogramo, aquí también se tiene una relación directa con el tamaño del grano debido a sus características genéticas.

10). Para el número de semillas por Kilogramo de café seco de agua 40% de Humedad.

Se observa en el cuadro y gráfico Nº 26.1. a altitud baja (600 – 900 m.s.n.m.), la variedad caturra arrojó mayor número de semillas (4438.67) que las variedades typica y catimor con 4078.0 y 3921.67 semillas por kilogramo respectivamente.

Para 900 – 1200 m.s.n.m (A₂) y 1200 – 1600 m.s.n.m. (A₃), fue la variedad Typica la que arrojó mayor número de semillas para hacer un kilogramo seguido de las variedades caturra y catimor respectivamente. Como se puede observar la variedad typica y caturra necesitan mayor número de semillas para hacer un kilogramo, para este parámetro la variedad Catimor tiene una alta diferencia significativa frente al caturra y el Typica por tener mejores características genéticas por ser un híbrido.

En el cuadro y gráfico Nº 26.2, se observa que las mayores altitudes afectaron significativamente el número de semillas de las tres variedades.

Para el número de semillas por Kilogramo de café pergamino 13 % de humedad.

En el cuadro y gráfico Nº 28.1 la variedad typica (B₃) necesita mayor número de semillas para hacer un kilogramo (6024.67) que las variedades catimor (B₁) con 5904.17 y 5505.0 para la variedad caturra a altitudes bajas (600 – 900 m.s.n.m.), por otro lado las variedades caturra y typica a altitudes media y alta necesitan de mayor número de semillas para hacer un kilogramos superando estadísticamente a la variedad catimor. En campo se corrobora esta observación, ya que el Typica en zona baja tiene las semillas pequeñas influenciados más que todo por las lluvias, por que el agua es fundamental para el llenado de granos; además en las zonas bajas el periodo de sequías es más prolongado, mientras que en zonas altas el catimor necesita menor número de semillas para un kilogramo por presentar mejores características genéticas por ser un hibrido.

Como se puede observar en el cuadro y gráfico Nº 28.2- En general en altitudes altas (1200 a 1600 m.s.n.m.) se necesita menor número de semillas para hacer un kilogramo.

B.- EVALUACIONES DE FACTORES DE CONVERSIÓN

Para determinar éstos parámetros se ha tomado como referencia para el peso del café cerezo una lata con las siguientes dimensiones 0.235 m x 0.235 m x 0.349 m que equivale a 0.0193 m³.

VARIEDAD TYPICA

Como podemos observar en los cuadros N° 29, 30 y 31 evaluado en diferentes zonas y altitudes se encontró que al nivel de zona alta (1200 a 1600 m.s.n.m) al 13%H° de humedad de 12.773 Kilogramos de Café cerezo se ha obtenido un mejor peso de café pergamino de 2,998 Kilogramos notando que en esta zona se comporta mejor esta variedad, más no así en demás zonas evaluadas. Como se observa en la zona media (900 a 1200 m.s.n.m) que de 12.575 Kilogramos de Café cerezo se ha obtenido 2.832 Kilogramos de café pergamino siendo un peso regular y al nível de la zona baja (600 a 900 m.s.n.m) se encontró un peso menor de 12.392 Kilogramos de café cerezo se obtuvo 2.715 Kilogramos de café pergamino obteniendo mejores pesos a 40 y 13% de H°, en el nível zona alta.

* VARIEDAD CATURRA

Como podemos observar en los cuadros N° 32, 33 y 34 en esta variedad evaluada en diferentes zonas y altitudes encontramos también que en zona alta (1200 a 1600 m.s.n.m) al 13% de H° que de 13.017 Kilogramos de café cerezo se ha obtenido 3.011 kilogramos de café pergamino siendo un mejor peso, al nivel de zona media (900 a 1200 m.s.n.m), de 12,847 Kilogramos de café cerezo se ha obtenido 2.733 Kilogramos de café pergamino y a nivel zona baja de 12,579 Kilogramos de café cerezo se tuvo

un peso de 2,685 Kilogramos de café pergamino. Los mejores pesos se obtuvieron al 13% de H^o fue al nivel de zona alta.

VARIEDAD CATIMOR

Como podemos observar en los cuadros N° 35, 36 y 37 los resultados obtenidos en esta variedad al nivel de diferentes zonas y altitudes al 13% de H°, encontramos el mejor resultado al nivel de zona alta de 13,217 Kilogramos de café cerezo se obtuvo un peso de 3.005 Kilogramos de café pergamino; en zona media de 13.108 Kilogramos de café cerezo se ha obtenido 2.743 Kilogramos de café pergamino, en zona baja de 12.888 Kilogramos de café cerezo se tuvo 2.677 Kilogramos de café pergamino. Obteniendo mejores pesos a 13% de H° al nivel de zona alta. En el cuadro N° 38 podemos observar el resultado de los promedios obtenidos en el Alto Mayo para los factores de conversión.

C. NUMERO DE LATAS POR QUINTAL AL 13% H° A DIFERENTES ALTITUDES (Baja, Media Y Alta)

VARIEDAD TYPICA

Como podemos observar en el cuadro Nº 41 el número de latas por quintal al 13 % de Hº para la variedad Typica encontrado a diferentes altitudes (baja, media y alta) son de: 7.41, 6.88, 6.71 latas respectivamente, teniendo que en el nível de zona alta se encontró el menor número de latas por quintal. A nível campo se puede precisar que este se debe a que la mayoria de plantaciones de la variedad typica sembradas en el Alto Mayo son plantas con más de 10 años de producción a esto se suma la fertilidad del suelo, el clima y el manejo que el agricultor puede realizar.

VARIEDAD CATURRA

Como podemos observar en el cuadro Nº 40 el número de latas por quintal al 13 % de Hº para la variedad caturra encontrada a diferentes altitudes (Baja, Media y Alta) son de: 7.40, 7.11 y 6,87 latas respectivamente; observando que a nivel zona alta se obtuvo menor número de latas por quintal. En el campo se puede observar la variedad caturra pesa un poco más que el typica debido a que la mayoría de las plantaciones están por los 8 años de producción en promedio y su mejoramiento genético hace que esta variedad presente mayor peso a esto se suma la fertilidad del suelo, el clima y el manejo que el agricultor puede realizar.

VARIEDAD CATIMOR

Como podemos observar en el cuadro Nº 39 el número de latas por quintal al 13 % de Hº para la variedad catimor encontrado a diferentes altitudes (Baja, Media y Alta) son de: 6.91, 6.70 y 6.43 latas respectivamente observando que a nivel zona alta se obtuvo menor número de latas por quintal. Estos resultados están influenciados por que las plantaciones de catimor establecidas hace 4 ó 5 años se han sembrado en nuevas áreas donde la fertilidad del suelo y las lluvias y su mejor característica genética referente a la variedad caturra y typica influyen mucho en el llenado de grano y por ende en un peso por semilla.

NOTA: Las discusiones no se comparan con otros estudios y/o bibliografías debido a que no se cuenta con éstos.

VII.- CONCLUSIONES

En el presente trabajo de investigación en donde se evaluó constantes físicas y factores de conversión a diferentes altitudes (Baja, Media y Alta) con tres variedades (Typica, Caturra y Catimor) se llegó a las siguientes conclusiones:

- 7.1 En las evaluaciones realizadas en cuanto al parámetro del peso de un m³ para café cerezo según el método de Sheffe por contrastes entre las altitudes y las variedades encontramos alta diferencia significativa entre las altitudes alta (A₃) referentes a las altitudes baja (A₁) y media (A₂). La variedad catimor tuvo mejores resultados con respecto a los demás tratamientos, con valores de 667.83 (A₁), 679.19 (A₂) y 686.32 (A₃) Kg/m³ respectivamente como se puede apreciar en el cuadro N° 08.
- 7.2 En el parámetro evaluado de un m³ café baba se encontró que la variedad catimor tiene mayor cantidad de mucílago a diferentes altitudes (A₁,A₂ y A₃) con valores de 877.86 (A₁), 905.01 (A₂) y 916.54 (A₃) Kg/m³ respectivamente. Como se puede observar en el cuadro N° 09.
- 7.3 Para la evaluación de café húmedo (recién lavado) concluimos diciendo que la variedad catimor es el que más peso tiene y a medida que aumenta la altitud va incrementándose el peso con valores de 701.64 (A₁), 723.45 (A₂) y 766.42 (A₃) Kg/m³ respectivamente. Como se puede observar en el cuadro N° 11.
- 7.4 Para el parámetro de café seco de agua (40 % H°) se determinó que la variedad caturra en zona alta (T2) tuvo mayor peso con 626.51 Kg/m³ con referencia a los demás tratamientos evaluados. Como se puede observar en el cuadro N° 13.

n la evaluación de café pergamino (13 % H°) se obtuvo que los tratamientos 1, T₄ y T₇ son los que mayores pesos por metro cúbico tienen, en omparación con los demás tratamientos evaluados con valores de 451.78 T₁), 433.07 (T₄) y 420.12 (T₇) Kg/m³ respectivamente. Como se puede oservar en el cuadro N° 15.

n la evaluación de pulpa fresca sin apisonar se determinó que la variedad itimor pesa más en zonas bajas (T₇) y media (T₄) con valores de 420.78 y 30.48 Kg/m³ respectivamente, mientras que la variedad caturra pesa más al vel de zona alta (T₂) con valor de 381.91 Kg/m³ respectivamente. Como se rede observar en el cuadro N°17.

n la evaluación de pulpa fresca mojada se obtuvo que los tratamientos T₁, T₄
T₇ son los que mayores pesos por metro cúbico tienen, en comparación con s demás tratamientos evaluados con valores de 451.42 (T₁), 441.50 (T₄) y 11.91 (T₇) Kg/m³ respectivamente. Como se puede observar en el cuadro N° 3.

ara la evaluación del número de frutos por kilogramos de café cerezo se acontró que la variedad catimor necesita de menor número de frutos para un ilogramo a diferentes altitudes (A₁, A₂ y A₃), con valores de 513.17 (T₇), 31.83 (T₄) y 440 (T₁) frutos/Kg respectivamente; como se puede observar en cuadro N° 21, mientras que la variedad caturra y typica necesitan de mayor antidad de frutos para un kilogramo.

n el número de semillas/Kg de café húmedo se encontró que la variedad atimor necesita de menor número de semillas para un kilogramo a diferentes ltitudes (A₁, A₂ y A₃), con valores de 2975 (T₇), 2551.67 (T₄) y 2385 (T₁) emillas/Kg respectivamente; como se puede observar en el cuadro N° 23,

- mientras que la variedad caturra y typica necesitan de mayor cantidad de semillas para un kilogramo.
- 7.10 En el número de semillas/Kg de café seco de agua (40%H°) se encontró que la variedad catímor necesita de menor número de semillas para un kilogramo a diferentes altitudes (A₁, A₂ y A₃), con valores de 3921.67 (T₇), 3705 (T₄) y 3046.67 (T₁) semillas/Kg respectivamente; Como se puede observar en el cuadro N° 25, mientras que la variedad caturra y typica necesitan de mayor cantidad de semillas para un kilogramo.
- 7.11 En el número de semillas por kilogramo de café pergamino (13%H°) se encontró que la variedad catimor necesita de menor número de semillas para un kilogramo a altitudes media y alta (A₂ y A₃), con valores de 4435 (T₄) y 4151.67 (T₁) semillas/Kg respectivamente y la variedad caturra necesita menos cantidad de semillas en zona baja(A₁) con valor de 5505 (T₈) semillas/Kg respectivamente; Como se puede observar en el cuadro N° 27, mientras que la variedad typica necesita de mayor cantidad de semillas para un kilogramo.

III.- RECOMENDACIONES

- 8.1 Se recomienda sembrar la variedad Catimor a una altitud de 1200 1600 m.s.n.m. por tener mejores rendimientos con un promedio de 60 qq/Ha con una tecnología media y por que a esta altitud las condiciones edafo-climáticas son muy favorables para producir un café de excelente calidad.
- 8.2 Se recomienda el almacenamiento del café pergamino con un porcentaje de humedad de 13% para evitar malograr la calidad del café y poder obtener un buen procesamiento del café.
- 8.3 Realizar una cosecha selectiva para que el agricultor con menos Kilogramo de Café Cerezo obtenga un quintal de Café pergamino al 13% de humedad.
- 8.4 Las instituciones estatales y privadas abocados a la producción del café deben continuar con el apoyo en asistencia técnica y económicas al agricultor cafetalero para mejorar la productividad por hectárea y la calidad de exportación.
- 8.5 Se recomienda realizar trabajos de investigación en determinación de características organolépticas del café Coffea arabica, variedad Catimor producido en el Alto Mayo

X.- RESUMEN

El presente trabajo de investigación se ejecutó en el Valle del Alto Mayo provincias de Moyobamba y Rioja Distritos de: Soritor, Habana, Yantaló, Jepelacio, Moyobamba, Pardo Miguel, Nuevo Cajamarca, Yorongos y Rioja, con el objetivo de conocer las constantes físicas y factores de conversión del café en tres variedades: Catimor, Caturra y Typica a diferentes altitudes sobre el nivel del mar desde los 740 a 1 400 m.s.n.m.

El análisis estadístico empleado para este trabajo fue un Diseño Completamente al Azar (DCA) con arreglo factorial de 3 x 3 (Altitudes y variedades) con nueve tratamientos y seis observaciones por cada una de ellas.

Los resultados que se obtuvieron para los diferentes parámetros son:

- ❖ El tratamiento T₁ Catimor en zona alta es el que ha obtenido diferencias significativas frente a los demás tratamientos evaluados para los parámetros de un m3 de café: cerezo, baba, húmedo, pergamino seco al 13 % de H°, pulpa mojada, número de frutos por Kg. de café cerezo, número de semillas por Kg. de café: húmedo, seco de agua al 40 % de H° y pergamino seco al 13 % de H°.
- Se determinó que los tratamientos T₄ y T₇ Catimor en zona media y baja tienen mayor peso por m³ de pulpa fresca frente a los demás tratamientos evaluados.
- Se determinó que los tratamientos T₄ y T₁ necesitan menor número de semillas para hacer un Kg. de café pergamino seco al 13 % de H° con respecto a los demás tratamientos evaluados.
- Se ha encontrado que el tratamiento T₂ Caturra en zona alta tiene mayor peso por m³ de café seco de agua al 40 % de H° frente al resto de tratamientos evaluados.

- En la evaluación de factores de conversión respecto a la variedad Typica a diferentes altitudes: Alta "Media y Baja se determinó que de 12.773; 12.575 y 12.392 Kg. de café cerezo, se ha obtenido 2.998; 2.832 y 2.715 Kg. de café pergamino seco al 13 % de H°.
- En la evaluación de factores de conversión respecto a la variedad Caturra a diferentes altitudes: Alta "Media y Baja se determinó que de 13.017; 12.847 y 12.579 Kg. de café cerezo, se ha obtenido 3.011; 2.733 y 2.685 Kg. de café pergamino seco al 13 % de H°.
- En la evaluación de factores de conversión respecto a la variedad Catímor a diferentes altitudes: Alta "Media y Baja se determinó que de 13.217; 13.00 y 12.888 Kg. de café cerezo, se ha obtenido 3.005; 2.775 y 2.677 Kg. de café pergamino seco al 13 % de H°.
- En cuanto al número de latas por quintal de café pergamino seco al 13 % de H°, se ha encontrado que la variedad Catimor necesita de la menor cantidad de latas para hacer un quintal, con un valor de 6.68 latas respecto a la variedad Typica y Caturra que necesitan de un mayor número de latas para un quintal 7.00 y 7.13 latas respectivamente.

IX. - SUMMARY

The present investigation work was executed in the valley of the High May county of Moyobamba and Rioja Districts of: Soritor, Habana, Yantaló, Jepelacio, Moyobamba, Pardo Miguel, Nuevo Cajamarca, Yorongos, and Rioja, with the objective of knowing the physical constants and factors of conversion of the coffee in three varieades: Catimor, Caturra and Typica to different altitudes on the level of the sea from the 740 to 1400 m.s.n.m.

The analysis statistical employee for this work was a Design Totally at random (DCA) with factorial arrangement of 3 x 3 (Altitudes and varieties) with nine treatments and six observations for each one of them.

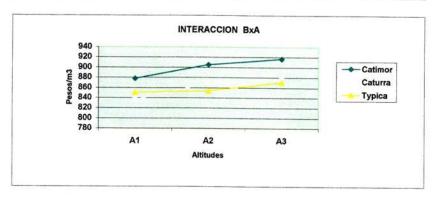
The results that they were obtained for the different parameters they are:

- * The treatment T₁ Catimor in high area is the one that has obtained significant differences in front of the other treatments evaluated for the parameters of a m³ of coffee: cherry tree, dribbles, humid, dry parchment to 13% of H°, wet pulp, number of fruits for Kg. coffee cherry, number of seeds for Kg. of coffee: humid, dry of water to 40% of H° and dry parchment to 13% of H°.
- * It was determined the treatments T₄ and T₇ Catimor in half area and it lowers they have bigger weight for m³ of fresh pulp in front of the other evaluated treatments
- * It was determined that the treatments T₄ and T₁ need smaller number of seeds to make a Kg. of coffee dry parchment to 13% of H° with regard to the other evaluated treatments.

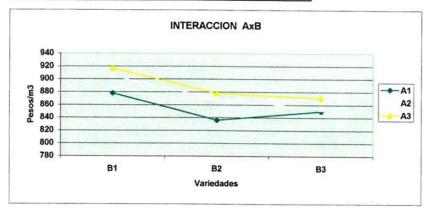
- * It is has been the treatment T₂ Caturra in high area has bigger weight for m³ of dry coffee of water to 40% of H° in front of the rest of evaluated treatments.
- * In the evaluation of conversion factors regarding the variety Typica to different altitudes: High, Mediates and Descends it determined of 12.773; 12.575 and 12.392 Kg. of coffee cherry, it has been obtained 2.998; 2.832 and 2.715 Kg. of brown dry parchment to 13% of H°.
- * In the evaluación of conversion factors regarding the variety Caturra to different altitudes: High, Mediates and Descends it determined of 13.017; 12.847 and 12.579 Kg. of coffee cherry it has been obtained 3.011; 2.733 and 2.685 Kg. of brown dry parchment to 13% of H°
- * In the evaluation of conversion factors regarding the variety Catimor to different altitudes: High, he/she Mediates and he/she Descends determin6 quo of 13.217; 13.00 and 12.888 Kg. of coffee cherry, it has been obtained 3.005; 2.775 and 2.677 Kg. of brown dry parchment to 13% of H°.
- * As for the number of cans for quintal of brown dry parchment to 13% of H°, it has been the variety Catimor needs of the smallest quantity in cans to make a quintal, with a value of 6.68 cans regarding the variety Typica and Caturra need of an adult number of cans for a quintal 7.00 and 7.13 cans respectively.

X.- BIBLIOGRAFIA

1	ADEX-DA, 1998	"BOLETIN INFORMATIVO"	Lima - Perú	p. 35
2	ADEX-DA 1999	"BOLETIN INFORMATIVO"	Lima - Perú	p. 25
3	CASTAÑEDA, E.	1997 "MANUAL TECNICO CAF	ETALERO"	
	Lima – Perú	p. 162.		
4,-	COSTE, R. 1978	"EL CAFETO" San José de la Cos	sta Rica.	p. 225.
5	DIAZ, C.R 1989	" EL CULTIVO DEL CAFÉ" man	ual práctico,	TOA -
	Colombia.	p. 152		
6	FIGUEROA, R.	1990 "LA CAFICULTURA EN E	EL PERU"	Editorial
	Concytec.	Lima – Perú p. 234.		
7	OVIDIO, J. 1980	" EL CULTIVO DEL CAFÉ" Color	mbia	p. 185
8	SENAMHI TARA	POTO. 1999 "REPORTE CLIMATO	DLOGICO 1999'	,
	TARAPOTO	- PERU.		
9	SULCA, B. 1996	"BASES TECNICAS PARA EL CI	JLTIVO DEL CA	AFETO"
	INIA TAR	APOTO – PERU. p. 37		
10	URIBE, A.A. 1977	"AVANCES TECNICOS CENICA	FE" Colomi	bia. p. 65
1	VASQUEZ, P.H.	1997 "EVALUACIÓN DE LA	EFICIENCIA D	E LAS
	UNIDADES	COMPACTAS DE BENEFICIO E	COLÓGICO (U	CBE) Y
	SECADORES	S SOLARES EN ROQUE (LAMAS).	•	
2	ZAMORA, Q. L.	1 998 "MANUAL DE RECOME	NDACIONES PA	ARA EL
	CULTIVO DI	EL CAFÉ" ICAFE, San José de Costa	Rica. p. 195.	


ANEXO

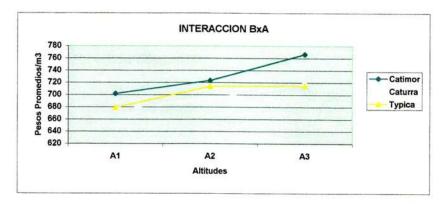
GRAFICOS


10.1 : Interacción: Metro Cúbico de café baba (BxA)

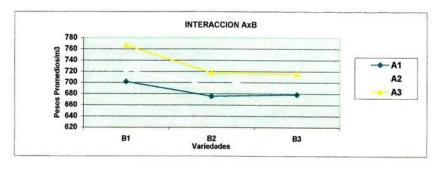
Y\X	A ₁	A ₂	A ₃
B1	877.86	905.01	916.54
B2	835.92	868.79	877.59
B3	849.96	853.65	870.47

10.2 : Interacción : Metro Cúbico de Baba (AxB)

B ₁	B ₂	B ₃
377.86	835.92	849.96
05.01	868.79	853.65
16.54	877.59	870.47



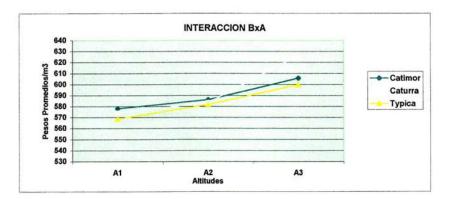
Donde: A = Altitud


12.1 INTERACCION B x A: CAFÉ HUMEDO

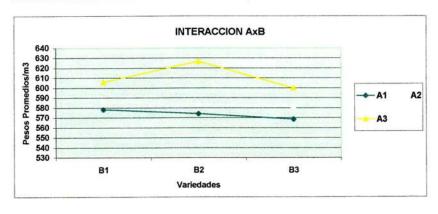
A ₁	A ₂	A ₃
701.64	723.45	766.42
375.41	694.09	717.18
678.56	713.52	715.03

12.2 INTERACCION AxB : CAFÉ HUMEDO

B ₁	B ₂	B ₃
701.64	675.41	678.56
723.45	694.09	713.52
766.42	717.18	715.03



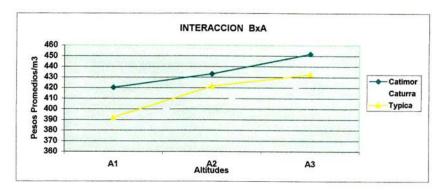
Donde: A = Altitud


14.1 INTERACCION B x A: CAFÉ SECO DE AGUA (40% Hº)

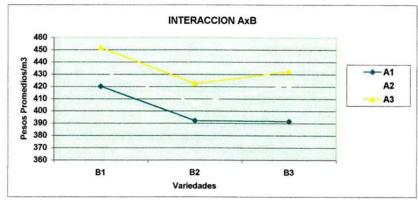
A ₁	A ₂	A ₃
578.07	585.93	605.79
574.05	583.33	626.51
568.44	581.61	599.76

14.2 INTERACCION A x B: CAFÉ SECO DE AGUA (40% Hº)

B ₁	B ₂	B ₃
578.07	574.05	568.44
585.93	583.33	581.61
605.79	626.51	599.76



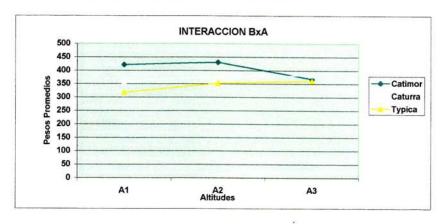
Donde: A = Altitud


16.1 INTERACCION B x A: CAFÉ PERGAMINO SECO (13% Hº)

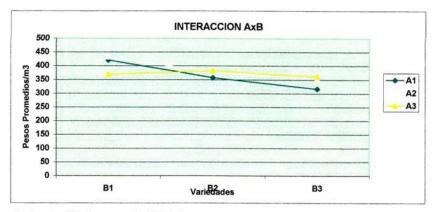
A ₁	A ₂	A ₃
420.12	433.07	451.78
392.26	406.52	422.28
391.73	421.54	432.36

16.2 INTERACCION A x B : CAFÉ PERGAMINO SECO (13% Hº)

B ₁	B ₂	B ₃
20.12	392.26	391.73
33.07	406.52	421.54
51.78	422.28	432.36



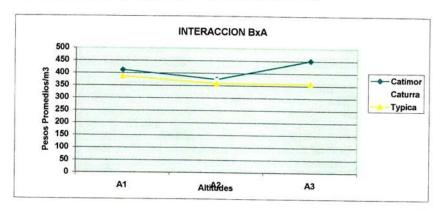
Donde: A = Altitud


18.1 INTERACCION B x A : PULPA FRESCA SIN APISONAR

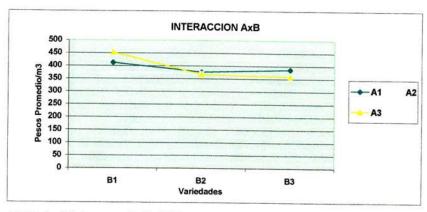
A ₁	A ₂	A ₃
420.78	430.48	368.52
357.12	378.06	381.91
316.71	352.12	360.76

18.2 INTERACCION A x B : PULPA FRESCA SIN APISONAR

B ₁	B ₂	В ₃
420.78	357.12	316.71
430.48	378.06	352.12
368.52	381.91	360.76



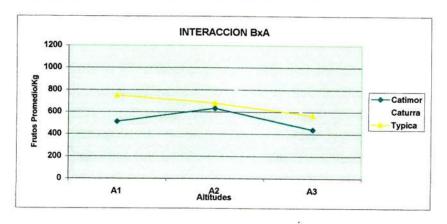
Donde: A = Altitud


20.1 INTERACCION B x A : PULPA MOJADA

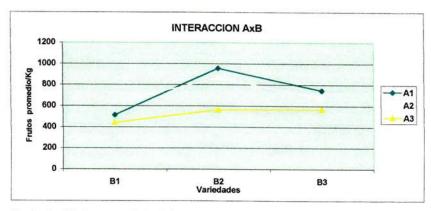
A ₁	A ₂	A ₃
111.91	374.83	451.42
375.61	370.17	366.23
385.85	357.48	358.84

20.2 INTERACCION A x B : PULPA MOJADA

B ₁	B ₂	B ₃	
411.91	375.61	385.85	
374.83	370.17	357.48	
451.42	366.42	358.84	



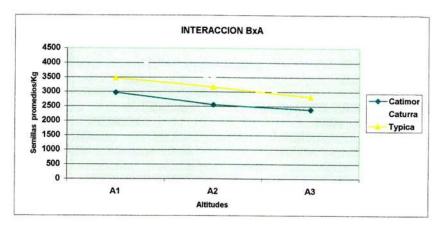
Donde: A = Altitud


22.1 INTERACCION B x A : NUMERO DE FRUTOS POR KILOGRAMO DE CAFÉ CEREZO

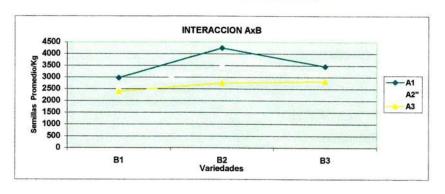
A ₁	A ₂	A ₃
513.17	631.83	440
954.83	862.83	561.33
746.83	678.33	568.5

22.2 INTERACCION A x B : NUMERO DE FRUTOS POR KILOGRAMO DE CAFÉ CEREZO

B ₁	B ₂	B ₃
513.17	954.83	746.83
31.83	862.83	678.33
440	561.33	568.5



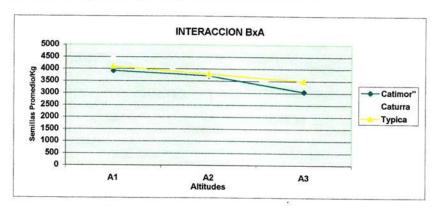
Donde: A = Altitud


24.1 INTERACCION B x A : NUMERO DE SEMILLAS POR KILOGRAMO DE CAFÉ HUMEDO

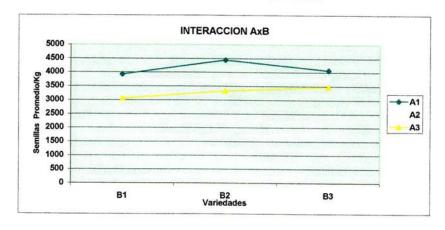
A ₁	A ₂	A ₃
2975	2551.67	2385
4246.33	3426.67	2746.67
3463.67	3164.17	2821.67

24.2 INTERACCION A x B : NUMERO DE SEMILLAS POR KILOGRAMO DE CAFÉ HUMEDO

B ₁	B ₂	В ₃
2975	4246.67	3463.37
2551.67	3426.67	3164.17
2385	2746.67	2821.67



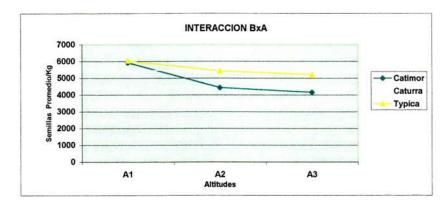
Donde: A = Altitud


26.1- INTERACCION B x A: NUMERO DE SEMILLAS POR KILOGRAMO DE CAFÉ SECO DE AGUA(40%H°)

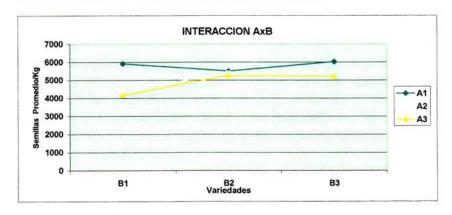
A ₁	A ₂	A ₃
3921.67	3705	3046.67
4438.67	3724	3325
4078	3778.33	3485

26.2.- INTERACCION A x B: NUMERO DE SEMILLAS POR KILOGRAMO DE CAFÉ SECO DE AGUA(40%Hº)

B ₁	B ₂	B ₃	
3921.67	4438.67	4078	
3705	3724	3778.33	
3046.67	3325	3485	



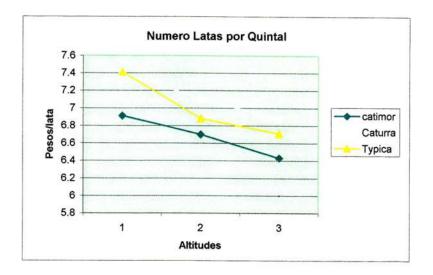
Donde: A = Altitud


28.1.- INTERACCION B x A: NUMERO DE SEMILLAS POR KILOGRAMO DE CAFÉ PERGAMINO (13%Hº)

A ₁	A ₂	A ₃
5915.83	4435	4151.67
5505	5375	5253.33
6024.67	5419.83	5216.67

28.2.- INTERACCION B x A: NUMERO DE SEMILLAS POR KILOGRAMO DE CAFÉ PERGAMINO (13%Hº)

В,	B ₂	B ₃	
5915.83	5505	6024.67	
4435	5375	5419.83	
4151.67	5253.33	5216.67	



Donde: A = Altitud

GRAFICO N° 29 : NUMERO DE LATAS POR QUINTAL DE CAFÉ PERGAMIN(SECO (13% H°)

Variedad	A1	A2	A3	
B1	6.91	6.7	6.43	
B2	7.40	7.11	6.87	
B3	7.41	6.88	6.71	

